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ABSTRACT

A COMPARISON OF EQUATION-BASED MODELING WITH BAYESIAN
NETWORK MODELING FOR ENGINEERING APPLICATIONS

David P. Brown, Ph.D.
George Mason University, 2004

Thesis Director: Dr. Kathryn Blackmond Laskey

Modeling and Simulation is an important tool in product development. Current practice
is to use an equation-based approach. Equation-based models can require extensive time
and money to construct high fidelity models that accurately represent the real world. The
primary goal of this research is to explore alternate methods of creating accurate models
and simulations that can be done rapidly and at much lower cost. The research compared
engineering modeling applications for time of construction and the accuracy between
equation-based models and three methods of Bayesian network construction: human
judgment, formulae and computer-generated. The derivative method, a multivariate
approach to discretizing continuous data was proposed and compared to four current
search and score methods. The comparison found little difference in performance
between different methods of discretization; however, the derivative method was faster
than any of the iterative search and score techniques. The research software also

integrated a neural network into the Bayesian network construction. The neural network



strengthens the data set by predicting missing values or areas were data were incomplete.
Continuous leaf node probability tables were replaced by a distribution of the data that
fell within the bin plus additional uncertainty if any predictions were included. The
comparison found that human judgment Bayesian networks did not perform as well as
equation-based models. Bayesian networks created using formulae had approximately
the same accuracy and time of construction as equation-based models. Computer-
generated Bayesian networks were both faster (95% confidence) to construct and more
accurate (95% confidence) than equation-based models. An important assumption in this
comparison was that the data to construct the computer-generated network already
existed. Computer-generated Bayesian networks were not the optimal choice in every
case. To optimize the model construction process, the research developed integration
software and demonstrated that Bayesian networks and equation-based models could be
integrated together. This allowed for greater flexibility in the construction process by
allowing the option to use which ever type of model was best suited to the circumstances.
The research also demonstrated that equation-based simulation could be used to train an
influence diagram which decisions resulted in optimal outcomes. By demonstrating that
computer-generated Bayesian network models can be constructed in less time and with
less human labor, the results of this research have demonstrated that in many cases, there
is a fast, inexpensive alternative to equation-based modeling. The results of this research
are expected to benefit many areas of science and engineering where models and

simulations are essential tools of the trade.



1. Introduction

1.1 Modeling and Simulation as a Systems Engineering Tool

Modeling and Simulation (M&S) is an important tool for performing trade studies
in systems engineering. M&S provides designers with the ability to examine a large
number of virtual designs before constructing a prototype or system. This provides a
variety of benefits, including balancing requirements with available funding and
schedule, determining risk areas, building efficient test plans and reducing test
requirements. The aggressive use of modeling and simulation is one of the few systems
engineering tools that have demonstrated the simultaneous achievement of a better
product brought to market in less time at a lower cost [DTSE&E, 1996]. M&S should be
used throughout the life cycle of a system. A successful M&S program begins with an
aggressive effort early in concept exploration and definition. During this period of
product development, M&S may be the only data available upon which to make decisions
concerning cost and performance trade-offs as well as other engineering trades.
However, this currently requires an extensive up-front investment. Discussions with
program managers and studies have shown that M&S is not extensively used in smaller
programs because they do not have the resources to make this investment. Reducing the

cost of modeling and simulation so that it becomes affordable for use in smaller programs



and product developments would represent a substantial advancement to the field of
systems engineering. Additional challenges for systems engineering are the increasing
complexity of systems and the increasing pressure for interoperability between systems.
This system-of-systems concept means that almost every system is a subsystem in some
larger system. The M&S required to support a system-of-systems concept typically
requires the integration of large, complex models. Additionally, there is a drive towards
reuse of existing models to reduce cost. Although reuse of M&S can save considerable
time and money, integration of models built by different companies or organizations that
were never designed to communicate with each other can pose significant technical
challenges.

Five areas have been identified that currently inhibit integration of different M&S
tools [DTSE&E, 1996]. They are

availability of data descriptions

security/sensitivity of data

lack of equation-based understanding of complex phenomena
hardware and software limitations

variable resolution

There are ongoing efforts to define data standards. Efforts are also being made to better
secure data so that only those who are authorized can access it. Information technology
continues to grow at a breakneck pace while software capabilities expand to match
advances in hardware capability. This research focuses on the remaining two technical
areas: modeling of phenomena for which equation-based models do not exist and

integration of models at multiple levels of resolution. The research will also investigate



reducing the high cost and length of time required to build models using current equation-
based modeling techniques.
1.1 Terms and Definitions

For the purpose of this research, the term model is defined as a virtual
representation of a system, entity, phenomenon or process [Acquisition Functional
Working Group, 1999]. Models are simplified representations of systems at a particular
point in time intended to promote understanding of a real system [Bellinger, 2002].
Models are typically specified as parameterized families. Setting the parameters to
different values allows the user to examine the behavior of a particular simplified system
within the family. Often a modeler varies parameters in a process called sensitivity
analysis to examine their impact on model outputs [Morgan et al., 1990]. Models of
systems that evolve in time are often executed in computer simulations where the
computer representation consists of a sequence of representations of the system at a
succession of time points. The most common examples are training simulators that
contain a model of a physical system such as a car or aircraft. In many simulations, a
human operator can make inputs to the model that cause it to change state over time.
Thus, a person flying an aircraft simulator is currently at a specific point in the synthetic
sky at a specific set of parameters such as altitude, airspeed, attitude, etc. because of
control inputs made in past time. Inputs made at time present specifies either
deterministically or probabilistically where the airplane is at any future time. The time
within a simulation can either be accelerated or slowed down to better understand

interactions. Although modeling and simulation are two different things, they share



many common attributes and problems. When describing issues relevant to both models
and simulations, this group of virtual representations is referred to as Modeling and
Simulation (M&S).

There are different types of models and simulations. Most models currently in
use are equation-based. An equation-based model uses mathematical expressions to
describe the real world it attempts to replicate in a virtual environment. Thus, the first
requirement to construct an equation-based model is to obtain or develop a set of
equations that describes to the best of our ability how we believe things in the real world
work. Another type of model is a joint probability distribution, typically expressed as a
Bayesian network [Jensen, 1996]. A Bayesian network represents a set of related random
variables, which represent properties or features of the world whose values are unknown,
but for which probabilistic information is available. Each possible configuration of values
of the random variables represents a possible way the world might be. Probabilities are
assigned to these configurations by specifying a local probability distribution for each
random variable given a small set of random variables that directly influences it. Model
inputs are represented as evidence for the random variables corresponding to the inputs.
A Bayesian network inference algorithm can be used to make probabilistic predictions for
output random variables given the input random variables. The data required to specify
the local probability distributions can be obtained empirically from measurement by
recording the number of times something occurred when specific conditions were

observed, or by eliciting the probabilities from an expert.



Two other terms used to describe all models and simulations are fidelity and
resolution. Fidelity, defined from the Latin roots as faithful, is the level of accuracy with
which the virtual world of M&S actually represents (or is faithful to) the real world
[Acquisition Functional Working Group, 1999]. With equation-based models for well-
understood phenomena, the level of fidelity generally represents how many influencing
variables were taken into account when creating the model. For poorly understood
phenomena, it may be impossible to construct models with high fidelity. Determining
how many variables to include and the level of fidelity necessary for the intended use are
major issues in construction of equation-based models. Resolution is the degree of
precision represented by a model or simulation [Davis & Ziegler, 2000]. A model that
calculates an answer in inches provides more resolution than one providing an answer in
feet. Although fidelity and resolution are different concepts, they are related in that they
must be matched to each other. Specifying an output to several decimal places in
resolution is of little use if the model does not have the fidelity necessary to make the
extra decimal places meaningful. Alternately, if a quantity is calculated to the nearest
tenth of an inch but the output is rounded to the nearest foot, the fidelity is lost. Thus the
resolution of the output should match the fidelity with which the output was generated.
1.2 Benefits and Costs of Modeling and Simulation

Modeling and Simulation is an analysis and control tool in the field of systems
engineering. As computer power continues to increase, model builders are able to build
increasingly more complex and accurate virtual representations of real-world entities

[Zittel, 1998]. These have provided impressive improvements in product quality,



reductions in time to develop products and lower product costs. Table 1-1 provides a
summary of these improvements from a study of the use of modeling and simulation in

both the public and private sectors.



Table 1-1!

Measured Benefits of Modeling and Simulation

Who What Traditional Method | New Method with M&S
TRW Radar Warning 96 man-months 46 man-months
System Design
TARDEC | BFV Engineering 4-6 man-months 0.5 man-months
Analysis
TARDEC Low Silhouette 55 engineers — 3 years | 14 engineers — 16 months
Tank Design
General Engine Fan 4 weeks A few hours
Electric Blade
Lockheed Engineering 2100 hours 900 hors
Martin Mock-ups
Lockheed Changes per 4 2
Martin Final drawing
Lockheed Physical $30M each None
Martin Mock-ups
Lockheed Design Baseline 30% - 50% reduction
Martin Verification from baseline
IBM Computers 10,000 parts 4000 parts
4 years 2 years
Motorola Cellular devices Baseline 50% reduction in
product cycle time
Sikorsky | Helicopter External 38 draftsmen 1 engineer
Aircraft | Working Drawings 6 months 1 month
NAVSEA | Ship Seakeeping 27 days 3.5 days
Analysis
NAVSEA Radar Cross 57 days 17 days
Section Analysis
Comanche Source Prototype Fly-off Simulator/Surrogate
Helicopter Selection $500M Aircraft Fly-off
Program $20M

' DTSE&E study (1996) “Study on the Effectiveness of Modeling and Simulation in the Weapon System
Acquisition Process”, Final Report.




As can be seen from these examples, most of the success stories found during this study
involved large government programs and/or products developed by large corporations.
Although the benefits of Modeling and Simulation have been demonstrated, these
benefits come at a steep price. An aggressive M&S effort requires an extensive up front
investment. Development of the Boeing 777, a recognized business success case in
which M&S played a significant role, required an up front investment of roughly one
hundred million dollars [Garcia, Gocke & Johnson, 1994]. The M&S core body of
knowledge states under limitations that “M&S tools are not generally inexpensive and
require an up-front investment cost” [Acquisition Functional Working Group, 1999].
This statement is backed up by results of a study looking at the cost of the M&S effort on

Department of Defense programs summarized in table 1-2.

Table 1-2°
Department of Defense M&S Cost Data
Program Approximate M&S % of M&S with
Total Program Expenditures to Cost Data
Cost date

LPD-17 $10B $38M 100
ATACMS/BAT $5B $25.2M 100
Javelin $4B $48M 100
AN/BSY-2 $3B $58.3M 100
SADARM $3B $14.6M 78
V-22 $37B $50.2M 44
FAAD C2 $1B $37.6M 40

? Hicks & Associates, Inc., (2001) “Modeling and Simulation Survey Briefing”.



This same study chartered by the Department of Defense found that program managers
do not consider DoD-wide M&S investments as either cost or schedule effective [Hicks
& Associates, Inc., 2001]. Additionally, small programs simply do not have the
resources to make this up-front investment [DTSE&E, 1996]. One study found that if
resources permitted greater use of M&S, small development projects could achieve
improvements that were comparable to the gains achieved by the larger programs in
Table 1-1 [Brown, 1999].

If the cost and time to develop M&S tools can be reduced, this would represent a
large potential improvement in both government and commercial product developments.
In the United States, 50% of the gross domestic product is generated by small
businesses.” Improvements on the scale of those shown in table 1-1 represent an
enormous untapped potential in product development if modeling and simulation can be
done more quickly and at lower cost.

1.3 Why is M&S so Expensive?

The high cost and time associated with building equation-based models, even for
products the equations of which are well understood, can be seen by looking at the
modeling of a simple system. The particular case is the building a model for simulating
the performance of a spring-powered car [Brown, 1999]. The model was constructed for
use by students taking a course in systems engineering at the Defense Systems
Management College and was designed to demonstrate the value of modeling and

simulation when trade-offs are made during the design phase. The object was to conduct

3 Data from the Small Business Administration website.
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a series of trades to find a combination of variables that provided good performance for
only two performance requirements at the lowest cost. The final equation of motion for
this simple vehicle had 34 variables and 8§ coefficients. Modeling and simulation of
complex systems may require an extremely large number of variables and coefficients as
well as the equations that relate them together. It is highly unlikely that a company
making spring-powered cars could afford even a tiny fraction of the costs in table 1-2.
The study in the case then compared a group of students who used the model with a
control group that did not have access to the model. The use of M&S in the design phase
resulted in better performance at lower cost for the same amount of time spent on the
project [Brown, 1999]. The benefits of using M&S in the design phase of any project,
regardless of size, are significant.

Once any model is built, it must be verified and validated before use [Acquisition
Functional Working Group, 1999]. Verification tests that the model has been
implemented correctly, while validation checks to see that the model or simulation
accurately represents the real world system. To correctly validate a model, the actual
system is tested over the range of values that the model or simulation will be used to
predict. Any critical areas such as the edges of the operating envelope should be included
in the validation test data. The model predictions are checked against the test data. If the
model does not agree within specified limits in any area with the test data, further tests
are conducted to determine the cause of the difference. These causes are then
incorporated into the model and the results checked again. This process continues until

an acceptable agreement between the test data and the model is obtained. This explains
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the finding in the M&S Core Body of Knowledge which states that attempts to create
high-fidelity models rapidly drive up the cost of a modeling effort [Acquisition
Functional Working Group, 1999]. The key to wider use of modeling and simulation in
product development, particularly for smaller projects, is to significantly reduce the time
and expense of current methods.

1.4 Probability Models

The proposed alternative to be explored in this research is to model systems and
subsystems as probability distributions instead of deterministic equations. Probability
distributions can consistently represent different resolutions as they contain not only a
central tendency, but also a measure of certainty. Thus a low-resolution model can be
represented by a distribution with a larger spread to account for the lack of detail in the
model. A high-resolution model of the same entity would have the same central tendency
but less spread in its distribution representing finer detail and more certainty. Probability
distributions can be combined through subsystem interaction while maintaining
consistency that is captured by the central tendency and spread of the final system level
distribution.

The proposed tool to model probability distributions is a Bayesian network.
Bayesian networks encode a complete and coherent probability distribution over many
variables and can be used to evaluate both causal and evidential influences. The
conditional probabilities can be either entered directly or learned from a data set.
Bayesian networks can be manually constructed by creating nodes that represent the

variables in a problem and creating arcs representing cause and effect relationships



12

between the variables. Some advanced Bayesian network packages can learn network
structure directly from data sets. Thus, Bayesian networks can model phenomena that
can be measured or observed but for which equations are not known. The research will
explore the use of Bayesian networks for rapid generation of probabilistic models of
systems and subsystems.

To effectively use Bayesian networks to model systems and subsystems, they
must be able to integrate with existing equation-based models. This integration requires
two-way data exchange between the Bayesian and equation-based subsystem elements.
Since Bayesian networks are most frequently used in artificial intelligence applications,
there is the potential for other benefits to the science of modeling and simulation beyond
the central research. Complex systems frequently have humans that must interact with
the system. This interaction influences the outcome of dynamic simulations. Utility and
decision nodes can also be added to Bayesian networks resulting in influence diagrams
capable of making decisions. Utility nodes allow the assignment of value to various
states of input nodes while decision nodes allow assignment of decision options. An
influence diagram is capable of making probabilistic decisions using utility theory. Thus,
it should be possible for the equation-based portion of an integrated simulation to
generate input data to set the node states of a Bayesian network or influence diagram.
The network could then make a probabilistic inference or optimized decision that could
be sent back to the equation-based simulation and would then affect the outcome. By
soliciting conditional probabilities and utility values from people who would control the

system in operation, it should be possible to have the influence diagram represent a user
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or group or users within a computer simulation. This would allow trade studies in which
human decision making and human interaction are simulated without the need to have
humans present.

Human decision making is currently implemented in many war game simulations.
A study of implementation finds the majority of systems use a rule-based approach to
decision making. The study found that this method is seriously lacking in realism
because the decision process was too stereotypical, predictable, rigid and doctrine
limited. Rule-based programming requires either complete information to make a
decision or an even larger number of rules to determine how to handle missing
information. The same study looked at three areas for improving the representation of
human decision making within simulations. These areas were rank-dependent utility,
multi-attribute utility and game theory. Rank-dependent utility uses non-linear
transformations from objective probabilities to decision weights. Multi-attribute utility
models the process by which multiple, and often conflicting objectives are traded off
against each other to make a decision. Game theory models systems in which multiple
interacting intelligent agents with conflicting objectives make decisions based on their
beliefs about the environment and behavior of other agents [Pew and Mavor, 1998]. The
ability of Bayesian networks and influence diagrams to learn from data sets could also be
used for system control within a simulation. The probabilistic relations between nodes
can be learned from the output of a simulation. Using utility nodes to define system
goals, an influence diagram can learn the parameters that resulted in the most favorable

outcomes. By structuring the simulation so that a Bayesian network or influence diagram
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could make decisions that affect the simulation outcome, the influence diagram could act
as a feedback control system by learning to make decisions that result in outcomes most
favorable to the goals. Even if the conditions of the problem undergo adaptive change,
the network can continue to learn from the outcomes keeping it current. By contrast,
rule-based models must be reprogrammed with new rules in response to a changing
environment. One German automobile manufacturer is successfully reducing its costs by
using a large influence diagram to control its production using real time updates of sales
data to predict the number of parts to be delivered and to forecast the delivery schedule
[Lerat, 2002]. Bayesian networks are also being integrated with a number of software
applications. Intel has released a set of Bayesian network software libraries to assist
software developers in building machine learning capabilities into their software
applications [Knight, 2003]. Microsoft has used Bayesian networks for years in their
Office Assistant and online troubleshooting wizards [Breese and Koller, 1997]. One of
the most recent applications of Bayesian networks is in filtering Spam Email [Sahami et
al, 1998].
1.5 Research Hypotheses

The objective of the research is to assess empirically how the probabilistic
modeling approach compares to equation-based models of the same phenomena. The
two areas of comparison are the time required to construct each model or simulation and
the accuracy with which the model or simulation predicts test data of the physical system

that is virtually represented. The systems to be tested are listed in table 1-3.
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Table 1-3
Evaluation Model Matrix

Appendix NAME
Amplifier
LRC circuit
Wing
Elevator control
Radar
Forward Looking Infrared
(FLIR)
Aircraft Radar Cross Section
Loan Application
Car Electrical Repair
Home Heating System
Commuter
Air Defense
Robotic Vehicle

esiiesliwii@Yieclfg

LR ==Za

The models and simulations are each described in a separate appendix as listed in table 1-

3. The research hypotheses are as follows:

Hypothesis #1

Null hypothesis: Bayesian networks have the same average percent error as equation-
based models.

Alternate hypothesis: Bayesian networks do not have the same average percent error as
equation-based models.

Hypothesis #2

Null hypothesis: Bayesian networks require less than or equal time to construct compared
with equation-based models.

Alternate hypothesis: Bayesian networks require greater time to construct compared with
equation-based models.

Each of these hypotheses will be tested against three types of Bayesian network models:

e Manually constructed networks using human judgment for probabilities

e Manually constructed networks using formulae for probabilities

e Computer constructed networks using structural and probabilistic learning
algorithms
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The goal of the research is to demonstrate that Bayesian networks can be constructed
more quickly and that these networks will have approximately the same accuracy as an
equation-based model of the same system or process. Of the three methods, the computer
generated networks are expected to have the fastest times of construction. The research
will demonstrate that Bayesian networks and equations-based models can be integrated
together and operate within the same modeling or simulation environment. Within this
integrated environment, the research will show that Bayesian networks or influence

diagrams can make decisions which can be used to control a simulation.



2. Current Methods of Modeling and Simulation

2.1 Methods of Handling Variability

As described in chapter 1, equation-based modeling and simulation is currently
performed by identifying the relevant dependent and independent variables that
characterize the behavior of the system and then developing equations that describe how
they relate to each other. Input values are identified and the model or simulation is
executed to provide an output. This can be demonstrated by looking at a simulation of a

home heating system shown in figure 2-1.

This illustrates a home heating model. The furnace operates in reponse to the variations of inside
temperature, responding to the heat loss caused by the components of the home and the
temperature differential between the inside and the outside. Fuel used is also plotted.
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Figure 2-1
Home Heating Model*

* Model provided with the Extend M&S software package. Original author is unknown.
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A thermostat controls the inside temperature of the house. The furnace adds heat when it
is on, while heat is lost through the roof, walls, doors and windows. The amount of heat

loss is also dependent on the outside air temperature. A single run output over a 24 hour

period using handbook insulation values and average high and low temperatures for the

month of January in the Washington DC area is shown in figure 2-2.
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Figure 2-2
Home Heating Simulation Output

As the model is run over a 24 hour period, one can see the variation in outside air
temperature shown as the sine function in the lower portion of the chart. The inside air
temperature is the saw tooth function at the top and the fuel oil consumed is the step
function going from lower left to upper right. Using handbook values and average
temperatures, one would expect this house to use 9.54 gallons of fuel each 24 hours.

If one were to go to the house shown above and measure the fuel used each 24

hours, it is highly unlikely one would get a value of precisely 9.54 gallons on any given
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day. This is because the output of any system can be heavily dependent on variability in
the inputs, unmodeled factors and random noise. It is difficult to control variables
outside a laboratory environment. In the home heating model, one can control to some
extent the variables such as the insulation in the roof, number of doors, windows, etc.
However, one has no control over the outside air temperature. If variation cannot be
controlled, the current practice in M&S is to run a sensitivity analysis on the variables
[Clemen, 1996]. A sensitivity analysis varies the independent variables over their
expected range of values in the anticipated operational environment to determine the
sensitivities (or gradients) with respect to the dependent variables of interest [ Arsham,
2002]. The model or simulation is run multiple times with the variable on which the
analysis is being performed being incremented by a fixed amount on each run. The
analysis begins at either the highest or the lowest value of the sensitivity range and
continues until the opposite end of the range is reached. A sensitivity analysis of seven

variables along with the single solution using point values is provided in figure 2-3.
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Sensitivity Analysis for Home Heating Model

After the analysis is run, one can ascertain how much impact changes in the
independent variable have on dependent variables of interest. As can be seen in figure 2-
3, the example model exhibits a low sensitivity to variability in the heat loss through the
roof over the expected range of the heat loss variable. The model exhibits the highest
sensitivity to outside air temperature. In this example, the high and low temperatures are
two variables within the model which cannot be controlled.

The current process of M&S sensitivity analysis is flawed when viewed from the
perspective of probability theory. If the dependent variables are continuous then there is
a zero probability of getting the exact answer provided by the model or simulation on any

one run [Larson, 1969]. This is a highly likely in any engineering problem. A sensitivity
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analysis provides a more complete answer by specifying a range over which the answer
may lie. However, this answer is incomplete in that it provides no information about
where within the range the answer is most likely to fall. The vertical difference between
the lines of figure 2-3 is provided only for separation to distinguish between the different
variables plotted on the same chart for comparison. There are no units on Y-axis of
figure 2-3. It also is deficient in the variables are varied one at a time while holding all
others constant. This analysis is sufficient in estimating model sensitivities only of the
effects of the parameters on the model are independent and monotonic [Bankes, 1993].
No probability or confidence can be attached to the range of even the most sensitive
variable. Furthermore, variables that show little sensitivity when varied independently
may exhibit strong sensitivity when varied in combination with other variables. Thus,
running a sensitivity analysis may not capture the true range of the solution space of the
dependent variables.

A review of research literature finds different approaches have been developed to
address the limitations described above. Some new modeling packages now allow a
Monte Carlo sampling to be performed using a distribution function instead of fixed
incremental steps. By running the model or simulation multiple times and plotting a
histogram of the outputs, one can now determine not only the range of possible outcomes
but also which of these answers are more or less likely to occur. An example of this
procedure for the daily low temperature is provided in figure 2-4. The analysis is done
for 1000 runs using a normal distribution of temperature with a mean of 20 degrees F and

standard deviation of 6 degrees F.
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Monte Carlo Sampling of Daily Low Temperature
One can see from the example of figure 2-4 that the most likely output values lie within
the center of the range. Because this method is evaluating one variable at a time, it
assumes independence between the variables and does not capture correlation between
variables.

Another proposed method is to do a pair-wise comparison of all variables with
each other to determine correlation [Clemen and Really, 1999]. This method would
identify situations in which two variables are correlated such that one variable either
positively or negatively impacts the other. It also identifies if synergistic effects are
present where two variables acting in combination may result in a dramatically different
result than either variable separately. If either condition exists, a sensitivity analysis is
run varying both variables simultaneously. An example of a dual sensitivity analysis for

the daily high and low temperature is provided in figure 2-5.
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Figure 2-5
Dual Sensitivity Analysis of Temperatures

For comparison, the individual sensitivities and handbook value solution are also shown.
As can be seen from figure 2-5, varying the daily high and low simultaneously from the
low end of each variable range to the high end results in a new sensitivity range. This
new range is 76% greater than the greatest individual analysis range. This method
provides a more accurate measure of the possible range of outputs. However, it captures
only pairs of correlated variables. If three or more variables are highly correlated as a
group, this will not be detected and the actual range of responses may be understated.
Since this method uses incremental steps, it does not provide any indication of where

within this expanded range the answer is more or less likely to lie.
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The most complete method found was the modeling of all variables that exhibit
variation as random variables [Morgan et al., 1990] [Bankes, 1993]. Each random
variable is set to a distribution function that describes how the variable behaves. A
Monte Carlo method is then used by sampling from each distribution over multiple
computer runs to obtain a probability distribution of the dependent variables. This
provides a complete probabilistic solution to the problem in that all correlations and
synergistic effects are captured, the complete range of possible outputs is captured, and
the likelihood of each answer within the range is specified. The Monte Carlo method has
linear complexity. The accuracy of the output distribution is dependent only on the
number of samples generated and is not dependent on the number of inputs. The Monte
Carlo method also allows use of standard statistical techniques to estimate the precision
of the output distribution. This allows a small sample set to be run and from this data an
estimate of the number of total samples required to achieve a desired confidence can be
calculated. This can be done using the formula

m>2*c*s/w)
where m is the total number of samples required, c is the deviation for the unit normal
enclosing the probability (distance enclosed by the two-tailed confidence interval of a
unit normal), s is the standard deviation from the sample and w is the width of the desired
interval enclosed by the two tailed confidence interval [Morgan et al., 1990].

To illustrate Monte Carlo sampling, the home heating model is again used as an
example. A distribution is first fit to each of the variables. An example of the loss factor

for the doors is shown in figure 2-6.
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Door Loss Distribution
The handbook value for door losses for doors with weather stripping is 18. New weather
stripping would likely have a normal distribution about the handbook value. The loss
factor for installed weather stripping will only increase with time as the weather stripping
and seals crack and wear out from use. The door loss distribution for an average door is
therefore assessed as a gamma distribution with most of the values falling to the right of
the handbook value. Similar distributions are then set for the roof, walls, and windows.
The fuel distribution for a Monte Carlo simulation with 1000 runs with probability
distributions for losses from the roof, walls, doors and windows, the furnace efficiency

and the daily high and low temperatures is shown in figure 2-7.
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Monte Carlo Simulation with Probability Distribution of Inputs
The Monte Carlo simulation results in a distribution that is approximately Gaussian for
fuel consumed with a mean of 10.25 gallons and a standard deviation of 1.29 gallons. It
is important to note that the mean of the distribution is higher than the 9.54 gallon answer
generated using handbook values. This demonstrates the importance of the distribution
assigned to the variables. In this case, the sensitivity analysis showed that the loss was
likely to become worse over time due to age and wear causing higher average fuel
consumption in the Monte Carlo simulation. Some companies such as caterpillar tractor
currently use this method in the design of their products [Blood, 2001].

Although this method provides a complete solution, it does so at a high
computational cost. The Monte Carlo method is considered to be a crude or brute force
technique because of the large number of samples and computational workload to achieve
the output distribution [Morgan et al., 1990]. Figure 2-8 illustrates computation times for

the same model using each of the above methods for assessing variability of results.
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Computer Execution Times for Home Heating Model
Figure 2-8 is plotted using a logarithmic scale because of the large differences in
execution times. A single run of this model on a 600 MHz notebook computer takes 0.3
seconds. Running either a single or dual sensitivity analysis increases the execution time
to 6.6 seconds. However, running a Monte Carlo simulation for either a single or
multiple variables increases the execution time to 5 minutes for 1000 runs and to 50
minutes for 10,000 runs. There is a trade-off using this method between accuracy and
speed in that generating more runs improves the accuracy of the output distribution while
increasing the run time to generate the distributions. Although there was little difference
between the means and standard deviations between 1000 and 10,000 runs, the maximum
fuel consumption increased from 17.2 to 19.9 gallons. Although this may not be
significant for a heating system trade study, a maximum possible value that is 16% higher

could be critical for a safety related trade study.
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2.2 Multi-Fidelity and Multi-Resolution Modeling

One trend in the field of M&S is the increased integration of models and
simulations. As discussed above, cost considerations have led to increasing reuse of
existing M&S tools in new developments [Hollenbach, 2001] [Konwin, 2001].  There is
also an increased development of system of system concepts in which systems are
integrated together to create larger, more complex systems. This requires the integration
of different models and simulations that were not designed to interoperate with each other
[Doyle, 2000]. These models were constructed with fidelities and resolutions as specified
for their original purpose. When these different models or simulations are integrated, the
result is mixed fidelity and mixed resolution. An analogy to this problem is to calculate
the area of a room with one person measuring the width with a tape measurer and giving
you the result to the nearest sixteenth of an inch and the other pacing off the length and
reporting the result in feet. The two measurements have very different accuracies with
respect to the actual lengths and were reported at different resolutions. The difficulty
then lies in how to combine these two inputs to estimate the area.

A review of literature and phone interviews with experts in this area shows that
the current approach to multi-fidelity model integration is through interaction at the
lowest common level [Hollenback, 2000], [Smith, 1999]. In the above analogy, the width
measurement would be rounded to the nearest foot for the calculation of the area and the
output would be specified in square feet. The drawback to this approach is that the
accuracy from the high fidelity width measurement was completely lost. The resulting

answer would only be accurate to plus or minus a square foot.
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What is proposed is a probabilistic solution to engineering problems in cases
where there is mixed fidelity and/or resolution in the input parameters. Using the earlier
example of finding the area of a room with two measurements of fidelity and resolution,
assume that the length and width are two different model elements of different fidelity
and resolution which must be combined. Let us further assume that the length is reported
at 125 3/16 inches and the width at 9 feet. Using current methods, one would convert the
length to 10.5 feet and multiply it by 9 feet to get an answer of 94.5 square feet. Using a
probabilistic method one would first quantify the accuracy of the measurements. Let us
assume that the length is normally distributed with a mean of 125.1875 inches and
standard deviation of .08 inches while the width is normally distributed with a mean of 9
feet and standard deviation of 1 foot. Modeling the length and width as probability

distributions and calculating the area is shown in the model in figure 2-9.
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Area Calculation Model
Using this method, the length is converted to feet so that both inputs are in consistent
units. Running ten thousand Monte Carlo samples provides an output distribution of the

dependent variable area as shown below in figure 2-10.
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Figure 2-10
Area Calculation Model Output

Since both distributions were normal, the mean value of 93.99 square feet is very near the
previous answer of 94.5 square feet. However, figure 2-10 shows that the actual answer
could take on a wide range of values. The additional information from a probability
distribution as an output provides valuable information in engineering applications. In
the above example, if one is measuring the area to cover the floor with some type of
protective coating, then 108 square feet of coverage should be purchased to assure a 90%

probability of having enough coating to cover the entire floor.



3. Bayesian Networks and Influence Diagrams

3.1 Network Description

Bayesian networks are directed graphs for representing probabilistic dependencies
among variables [Jensen, 1996]. Bayesian networks encode a complete and coherent
probability distribution over many variables and can be used to evaluate both causal and
evidential influences. A Bayesian network consists of a directed acyclic graph that
represents dependencies among variables, together with local probability distributions
defined for small clusters of directly related variables. Directed acyclic graphs consisting
of nodes which represent the variables and arcs (or directed edges) that describe cause
and effect relationships or statistical associations between the variables [Jensen, 1996].
Each variable has a finite set of mutually exclusive states. The graph may contain no
directed cycles, or paths that lead from a node to itself and follow the direction of the
arcs. Each node is assumed to be conditionally independent of its non-descendents given

its parents. An example Bayesian network is shown in figure 3-1

32
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Figure 3-1
Example Bayesian Network

Root nodes have no incoming arcs (e.g., nodes “Visit to Asia” and “Smoking”). Child
nodes have one or more incoming arcs.

Probability information in a Bayesian network is specified via a local distribution
for each node. The local distribution for a root node is simply an assignment of a
probability to each state such that the probabilities sum to 1. The local distribution for a
child node is given by a conditional probability table. This table shows the probability of
each possible state of the child conditional on each possible state of all of its parents.
Thus a child node with x states and having y parents also with x states would have a
conditional probability table with x¥"D entries. The joint distribution for all variables in

the network is given by the product of the local distributions for all the nodes:

P(Xy,....Xn) = 131 P(Xi | Xpa(i))
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where X,y denotes the parents of variable Xi.
The conditional probability that variable E takes on value e given that H takes on value h
is defined by the equation:

P(E=e|H=h) = P(E=e and H=h)
A straightforward consequence of this definition is Bayes Rule, a powerful mathematical
relationship by which probabilities can be modified to incorporate new evidence:

P(H|E) = P(H) * P(E|H) / P(E)
The first term, P(H|E) is referred to as the “posterior probability” or the probability of H
given evidence E. The term P(H) is the prior probability of H. The term P(E[H) is the
“likelihood” and gives the probability of the evidence assuming hypothesis H is true.
The last term is the probability of E that acts as a normalizing or scaling factor
[Niedermayer, 1998]. Bayes Rule can also be written in odds likelihood expressed as:

P(H=h,|E) = P(H=h,) P(E| H=h)
P(H=h,JE)  P(H= h,) P(E| H=h,)

The second factor is called the likelihood ratio for h; versus h,. This form clearly
demonstrates that evidence increases the probability of h; relative to h; if and only if the
evidence is more likely under h; than hs.

This can be demonstrated by entering evidence into figure 3-1. States “No Visit”,

“Smoker”, “Abnormal” and “Present” are entered into the network as shown in figure 3-

2.
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Chest Clinic XRay Abnormal

This evidence leads to beliefs of a low probability of Tuberculosis with moderate

probabilities of Lung Cancer and Bronchitis. If node “XRay Result” is changed from

“Abnormal” to “Normal”, the network of figure 3-3 is obtained.
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Chest Clinic Normal XRay

This single change of evidence results in a new set of beliefs. There is now a very low
probability of Tuberculosis or Cancer, and a high probability of Bronchitis.

There are three types of nodes that are used in networks: natural, utility and
decision nodes. Bayesian networks contain only natural nodes, while influence diagrams
contain all three types. Natural nodes are defined by the probability relations of parents
and children described above. Natural nodes can be of two types: discrete and
continuous. Discrete nodes have a finite or countable number of states typically
designated by a list of state names for finite state nodes or indexed by integers for
countable state nodes. Continuous nodes can take on values of real numbers in a range
between a lower and upper limit. This range of numbers can be either a continuous

function or discretized into bins. If discretized, the range is divided into a countable
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number of mutually exclusive, yet continuous bins. The bin width (or difference between
the lower and upper limit of each bin) does not have to be the same size for each bin.

When utility and decision nodes are used in a directed graph representing options,
probabilities over consequences or utilities over consequences in a decision problem, this
is referred to as an influence diagram. Influence diagrams extend Bayesian networks to
model optimal decision making along with uncertainty about the state of the world.
Natural nodes represent aspects of the world. Utility nodes allow the assignment of
values to each combination of states of its parent nodes. Decision nodes have states that
represent actions. These actions can be either intervening actions which cause a state
change of variables in the model or non-intervening where there is no impact on the
network model [Jensen, 1996]. Influence diagrams optimize decisions options by
summing the probabilities of the parents of the utility node times the utility values of
each decision option. The highest value represents the optimum decision under the given
inputs.
3.2 Bayesian Networks as Engineering Models

Bayesian networks and influence diagrams have several features that have the
potential to improve deficiencies identified with equation-based models. A Bayesian
network models the relationship between nodes as probability distributions. Thus, if a
probabilistic relationship is efficiently computable, a Bayesian network can calculate a
probability distribution for a dependent variable in a single computation cycle where as a
Monte Carlo simulation requires many cycles with corresponding high times of

computation to calculate the same distribution. Bayesian networks also can calculate an
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exact answer to a probabilistic query. The local distributions for a Bayesian network can
also be specified in more than one way providing additional flexibility. One method is to
represent relationships between variables as a formula. The formula can have random
components, allowing the expression of parameterized probability distributions. Thus,
the equation-based formula approach to model construction can be used if desired when
defining relationships between nodes. Probability distributions can also be specified by
eliciting the relations from experts. These predictions include the type of distribution and
central tendency. The certainty the expert assigns to the prediction will be reflected in
the spread of the distribution. The relations can also come from test data or observations.
It is also possible to use a combination of empirical data and informed engineering
judgment in representing a model [Laskey, 2002].

Another advantage of Bayesian networks is their ability to reason under
uncertainty [Laskey, 2002], or in engineering terms, to generate a plausible model output
even when some of the inputs are missing. An equation-based model must have all the
inputs to solve the equations that drive it. Bayesian networks can reason from the top
down or bottom up [Murphy, 2000]. In top down reasoning, the causes are entered and
the effects are calculated by the network. In bottoms up reasoning, the effects are entered
and the network will provide the most likely causes. One can therefore run the model as
a normal engineering application where the inputs are entered and the model provides the
outputs. The models can also be run in the reverse direction where the outputs are

entered into the model and the most probable states of the inputs are determined.
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An example Bayesian network for the area of a room is shown below in figure 3-
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Figure 3-4
Area Probability Model

In this example, the cause and effect relationships are shown by the direction of the arcs.

Input variables “Length” and “Width” are continuous chance nodes that are inputs to a

formula in the deterministic continuous node “Area”. In this example, “Length” is

defined as a normal distribution of mean 13.0 and standard deviation of 1.0 feet. “Width”

is defined as a uniform distribution of minimum 8 and maximum of 12 feet. “Length”

has a resolution of one foot while “Width” has a resolution of 0.5 feet. The distributions
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and resolutions were chosen to demonstrate the ability to handle different distributions in
a multi-resolution environment. Node “Area” is defined by the formula “Length” times
“Width”. When the network is compiled, the distribution of node “Area” is calculated as
shown in figure 3-4. One can enter values for “Length”, “Width” or both values resulting
in a probability distribution for “Area”. Additionally, one can also enter a value for
“Length” and “Area” and the model will provide the probability distribution for “Width”.
Such flexibility allows model builders to better understand the results, how the model
works and how it might be improved [Laskey, 2002]. Equation-based models cannot
provide solutions to problems with missing data without building a complex set of rules
for handling missing inputs. They also can not work in the opposite direction unless the
entire model is reconstructed.

Bayesian networks can be constructed using multiple methods. They can be built
manually using a graphical interface to generate the nodes, define the states (discrete
nodes) or bin widths (continuous nodes) and draw the arcs between nodes. Probabilities
for each node may then be entered directly into the node probability tables or generated
from an entered formula. Bayesian networks can also be constructed using computer
algorithms. Network structures can be generated by computer algorithms which learn the
relationships between variables from data sets. Some new Bayesian network packages
such as Hugin, MSBN, Bayesian Network PowerSoft and Kevin Murphy’s MATLAB
Toolbox are capable of learning structure from data sets. Computer methods also exist
for determining the dividing points for bins if discretization of continuous data is

required. Most Bayesian network software packages contain the capability to learn the
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local probability tables from files containing cases generated from the distribution to be
learned. This eliminates the need to input these numbers manually when data are
available. Research has also been done in the area of learning structure and probabilistic
relations with missing variables, incomplete data, or both simultaneously [Friedman,
1998].

3.3 Limitations of Bayesian Networks

Bayesian network theory, inference and software are mature with respect to
handling of discrete variables. Theory and software are not nearly as mature with respect
to continuous variables. Although there are methods for learning structure directly from
continuous data, studies have shown that discretizing the data prior to learning the
structure results in both higher efficiency with respect to learning and greater accuracy of
the learned network (Monti and Cooper, 1997). A number of different methods of
discretization have been proposed. These methods can be broken down further into the
following classes: supervised vs. unsupervised, dynamic vs. static, global vs. local,
splitting (top-down) vs. merging (bottom-up), direct vs. incremental and univariant vs.
multivariant [Liu et al, 2002].

Supervised methods of discretization use class information while unsupervised
methods do not. If the network structure is not known, then an unsupervised method
must be used. Previous research has shown that supervised methods result in better
inference and accuracy than unsupervised methods [Liu et al, 2002] [Xu, 2003].
Dynamic methods use an iterative approach such that information from previous

calculations is used in calculating the discretization. Static methods discretize in a single
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operation. Dynamic methods can take considerably longer to execute due to the iterative
nature of the approach. Global methods discretize data based on the entire structure of
the network. Local methods discretize each variable individually in isolation. For large
networks, local methods will take much longer to execute since each variable is
discretized individually. Splitting methods take the existing intervals of a variable and
divide it into two new intervals. Merging methods do the opposite by combining two
existing intervals into a single one. Direct methods divide a continuous variable range
into a number of bins simultaneously. Incremental methods start with a simple
discretization and iteratively attempt to improve the discretization using a scoring
technique. Incremental methods are time consuming due to their iterative nature.
Univariant methods discretize each continuous node one at a time. Multivariant methods
discretize multiple nodes at the same time. Multivariant methods take less time as they
are more efficient.

Most commercial software packages use unsupervised methods to discretize
continuous data prior to structural learning. The two most frequently used methods of
unsupervised discretization are the equal width and equal frequency methods. The equal
width method sorts the data, takes the distance between the minimum and maximum and
sets the bin widths at equal intervals between the minimum and maximum based on the
number of bins. The equal frequency method sorts the data, counts the total number of
data points and then divides up the bin widths so that an equal number of points are
placed in each bin. If the data points are not divisible into a whole number, the last bin

may contain more or less data than the other bins. Although unsupervised methods may
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be adequate for learning of structural relationships between variables, they are inadequate
for defining the bins of continuous nodes for learning of probabilistic relations from data
sets. An example of the performance of two models created using these two

unsupervised methods using a 10 bin discretization is shown in figure 3-5.

& Equal Width
®  Equal Frequency
Test Data

Volts (DC)

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
Time (secs)

Figure 3-5
Unsupervised Discretization Examples

Although either method provides a reasonable prediction in areas were the data is

relatively constant (Time > 1.20), both methods provide poor results in areas of rapid
change (0.00 — 0.80). Because of this limitation, networks created using uninformed
discretization methods are unsuitable for use as the basis for comparison to equation-

based models in this research.
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A number of supervised methods have been proposed for determining the bin
dividing points in continuous nodes once the structure has been determined. These
include entropy methods such as ID3, D2, MDLP, Contrast and Mantaras Distance. They
also include merging methods such as ChiMerge, Chi2, and ConMerge as well as other
methods such as 1R, Marginal Entropy, Zeta and Adaptive Quantizer (Liu et. al., 2002).
Two other iterative methods of discretization are the Hill Climbing [Pearl, 1985] and
Markov Chain Monte Carlo (MCMC) [Gilkes et al., 1996]. All these methods look at
discretizing a continuous variable by either splitting or merging the cut points based on
iterative refinement of individual variables.

A multivariate discretization method using a latent variable model is another
proposed method for improving discretization [Monti, 1999]. This method discretizes
continuous data prior to structural learning by using the latent variable to score potential
relationships between variables and then discretizing on the higher scores. Although this
method demonstrated improved structural learning as compared to unsupervised methods
and direct learning from continuous data, it is computationally complex and would
appear to be infeasible for very large databases. The number of possible latent variable
scores would increase exponentially with the number of variables using this approach.
Like the merge and split methods, the latent variable model is designed for discretization
of continuous data for construction of Bayesian network classification models.

The approach taken in this research is that if the structure is not known, the data is
discretized twice. If the structure is unknown, an unsupervised method must be used for

the first discretization so that a structural learning algorithm can be used. However, once
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the structure is determined, continuous nodes should be discretized again using a
supervised method to improve performance in the final network, as research has shown
that supervised methods provide better results as compared to unsupervised methods [Liu
et al, 2002] [Xu, 2003]. Considering the different methods available, a preferred
approach to the final discretization to maximize accuracy while minimizing
computational time would be a supervised, static, global, direct, multivariate approach.

Another limitation of current Bayesian network software packages is that the
networks they produce by learning from data sets can not generate a solution for a
different set of discrete conditions not in the data set. A network constructed from a data
set with input resistor values of 1000Q2 and 28002 would not be able to predict outputs
with an input of 1800Q. Similarly, a Bayesian network model can not interpolate
between two states. If training data were provided at intervals of one tenth of a second,
the model could not interpolate an answer at fifteen hundredths of a second. If the output
variable is continuous, the model would provide an answer of whatever bin that value fell
within. This is a severe limitation in that for engineering applications, a network could
not produce an answer for which it did not have training data unless a formula or expert
prediction were used to create the probability table.
3.4 Conclusions and Discussion

Recent advances in Bayesian network research provide some exciting possibilities
for modeling and simulation of systems. It may be possible to model systems which can
be observed but for which the mathematics, relations and all variables are not available.

Combining structural learning, automatic bin calculation for continuous variables and
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probabilistic relation learning, it would be possible to create Bayesian network models
through computer algorithms with minimal human input. These attributes are expected to
save large amounts of time in constructing a model as compared to equation-based
methods. Verifying that these attributes exist and quantifying them for both manually
constructed and computer constructed models is the principal focus of this research. The
two principal obstacles that must be addressed to achieve this capability are an efficient,
accurate method of discretization of continuous nodes once the structure is known and
developing a method to allow a network to make inferences to conditions not contained

in the input data set.



4. The Derivative Method of Continuous Variable Discretization

4.1 Derivative Algorithm

Data sets for engineering models typically contain multiple continuous variables
and mixtures of discrete and continuous variables. A discretization technique for
engineering models must be multivariate with the capability to discretize all related
continuous variables at the same time. A computationally efficient method that can be
directly calculated from the data set is proposed in this research. To illustrate this
method, a typical discretization problem for two related continuous variables is shown in

figure 4-1.

47
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Figure 4-1
Example Discretization Problem

In this example there are two continuous variables with the parent node data shown on
the X-axis and child on the Y-axis. A manual discretization of these variables would
place the bin dividing points far apart in areas were the curve is flat (-5 to -2, 2 to 5), and
closer together where the curve is steep (-2 to 2).

The derivative method is based on the concept of spacing cut points with respect
to how much the variables change. There are two versions of the algorithm: one in which
the nodes to be discretized have continuous parents or children described in 4.2.1 and one

in which a continuous node has only discrete parents and/or children described in 4.2.2.
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The derivative measures the change with one variable with respect to another. In the
example above, calculating the derivative of Y with respect to X would result in a
relatively small number in flat areas of the above curve and a much larger number in
steep areas. The derivative method measures the change across the entire data set by
numerical derivatives of the function and setting bin boundaries so that approximately
equal amounts of change fall into each of the bins. Given that variable X contains values
X1, X2, ..., X, and the variable Y contains values yy, y»,..., yn such that X and Y have an
equal number of points, the derivative at each point is approximately equal to

Ayi/AX = (Yir1 = Yi1) / (Xir1 — Xi-1)
fori=2 ton-1 and

AyilAx = (yi—yi1) / (Xi — Xi-1)

fori=n.
Ati=1 the first cut point is established. All change is then calculated in reference to this
starting point up to and including the final point at i = n.

The total amount of change is

total change = i%112| Ayi/AX |.
The absolute value is required to obtain a measurement of the total amount of change
irrespective of the direction of change in the data set. The amount of change to place in
each bin is defined by
change per bin = total change / # bins.
The final step is to find the dividing points that define the bin widths. This is done by

summing the absolute values of the derivative at each point. Each time a derivative is
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added the sum is checked to see if it has exceeded the change per bin limit. If it has not
exceeded the value the next absolute derivative value is added. If the sum exceeds the
limit there is a cut point in the interval between the current and last value of x and y. The
cut points for x and y are a percentage of the difference between the values of the
variables before and after the limit was exceeded. Ifj is the integer count of the number
of derivative values that were added when the sum exceeded the change per bin value,
then the percentage is
percent = (change per bin — ( current sum — Ayj/Ax)) / (Ayj/Ax).

The cut points in data sets X and Y are then found by

xcut = X + percent * (Xj — Xj.1)

and

yeut =yj + percent * (y;j — yj.1).
The value of the current sum must be reset to the amount in excess of the change per bin
value:

current sum = current sum — change per bin.
The process is now repeated until all the cut points are found.
Figures 4-2 and 4-3 show the results of applying the derivative method

discretization process for five and eight bins respectively.



=== Continuous Data
B x-Bins

A y-bins

® Cut Points

&
IS
&
R
o
N
N
w
IS
o

Figure 4-2
Five-Bin Discretization
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Figure 4-3
Eight-Bin Discretization
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The derivative method is straightforward for this simple case of two variables.
The more difficult challenge is extending the method to all possible combinations of
discrete and continuous parents and children. The derivative method needs only two sets
of rules to handle all cases: one rule set for continuous variables with either continuous
parents or children and a second set for continuous variables with only discrete parents
and children.
4.1.1 Continuous Nodes with Continuous Parents or Children

The derivative method simultaneously discretizes all continuous nodes that are
related to each other through arcs with other continuous nodes. An example network is
provided in figure 4-4. The first step is to identify all continuous node chains within a
network. In the example of figure 4-4, nodes A, D, E, F, G and H are continuous nodes

while B and C are discrete nodes.

(B)

Figure 4-4
Example Mixed-Node Network
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There are two continuous chains in the example: A-D-G and E-F-H. Note that although
B is a parent of a node in each chain, it is discrete so that it separates the continuous
groups into two separate chains. In this example, each chain is discretized separately.

Once all the nodes in a continuous chain are identified, the next step is to locate a
root chain node. A root chain node has no continuous parents. In the example network,
A, E and F are root chain nodes. A root chain node may or may not be a root node of the
network. It is only necessary to identify one root chain node, even though more than one
may exist. When taking a derivative, the operation is conducted on the dependent
variable with respect to the independent variable. A root chain node is selected as the X
variable because it is independent of all other nodes in a continuous chain.

Before the derivatives are calculated, the data set must be placed in the correct
format. The data for all continuous nodes in the chain is sorted on the chosen root chain
node from the lowest to highest numeric value. Duplicate data points are combined by
averaging the data for each duplicate value of the root chain node. This operation serves
two purposes. First, it ensures that the derivative process does not break down due to an
infinite slope. If a data set contains multiple points for the same value of the root chain
node X, then the difference in X between data sets would be zero and the derivative AY/
AX would be infinite. Second, it allows the process to ignore the influence of discrete
parents and children with arcs to or from the continuous variables in the chain. If the

slopes are similar, this can be seen in the example of figure 4-5.
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Figure 4-5
Example Data Set

A Bayesian network model of the system of figure 4-5 contains a continuous variable
(volts) with three parents (L, R and C) that were sampled as discrete variables and one
continuous parent (time). Each of the discrete variables has two states resulting in eight
total curves. One variable, L, has no influence on the system, resulting in four distinct
curves. The derivative method places an equal amount of change in each bin. This could
be done by measuring the derivatives of all eight curves individually and by adding these

individual derivatives until a cut point is found. This is accomplished using the formula

m n o

total change =X X ¥ | Ay;ji/AX |
i=1 j=1k=2
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where m is the number of all continuous nodes in the chain other than the chosen root
chain node, n is the number of rows in the CPT table for each continuous node of m and o
is the number of rows in the data set (number of unique values for the root chain node).
For complex chains with multiple parents, this presents a lengthy calculation. If the
derivatives are all positive or negative values, an alternate method allowing the discrete
parents to be ignored can be used, greatly simplifying the problem. This is accomplished
by using the average value of the dependent variables (all continuous curves in the chain)
at each point of the independent variable (root chain node). This results in an alternate

equation of the form

(o] m n

total change ZkZ | A((Z X yii/ Znp) /AX)i |
=2 i=lj=1

where the derivative is now calculated at the average value of all the continuous variable
curves. An example of this is shown in figure 4-6 by finding the average of the four

distinct curves of figure 4-5. For this example, o =101, m =1 and n =4 and Zn,,, = 4.
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Figure 4-6
Average Curve Example

One can observe from figure 4-6 that the cut points for the average of the four distinct
curves are the same as if one calculated the derivative for each curve individually and
then found the cut points by summing all four derivatives at each point in time until the
cut threshold is exceeded. This can also be demonstrated mathematically. The change

threshold defining a cut point using the individual curves is

mn o

threshold = %.Zikzzl Ayij/Ax | / # bins
i=1 j=1k=

while the threshold using the average of the curves is
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threshold = X | A((Z X yii/ Xnm) /AX)x | /# bins
k=2 i=lj=l
To define a cut point, the algorithm sums the derivatives until the threshold value is
exceeded. For the case where all derivatives are evaluated and having summed x points
of the independent variable, a check is made to see if the threshold has been exceeded

using the inequality

XX | Ayi/Ax | < 2 XX | Ayij/Ax |/ # bins.
=2 i=1j=1 i=1 j=1k=2

If at k=x the inequality is true, the next value of k is added until the inequality is false. At
that point a cut point is calculated as previously described in section 4.1. For the case
where the average of the derivatives is evaluated and having summed x points of the
independent variable, a check is made to see if the threshold has been exceeded using the

inequality
z | A((Z z Yij/ an) /AX)k | <X | A((Z z Yij/ an) /AX)k | / # bins.
k=2 il =l k=2

If the condition that all derivatives are either positive or negative holds true, then

Xm n

z | A((Z z Yij/ an) /AX)k | =1/ an RDIDID | A(yij)k/AX |
k=2 i=1j=1 k=2 i=1j=1

which states that the absolute value of the average of a set of all positive or all negative

derivatives is the same as the average of the absolute value of each derivative.
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Substituting this relation into the average derivative equation and multiplying both sides

by Xny,, the equation of the average of the derivatives is the same as the equation of the

individual derivatives. The algorithm for discretization of continuous chains is presented

in figure 4-7.

P

10.
11.
12.

13

18

Locate all continuous nodes in the continuous node chain

Identify a continuous root node of the chain

Sort the data in ascending numeric order on the root node

If duplicate values for the same set of input conditions exist for a value of the root
chain node, average the duplicates

Find the derivative of each node in the chain with respect to the root

Ayi/AX = (yj+1—Yj1) / (Xj+1 — Xj1) for j =2 to m-1

Ayi/Ax = (yj—yj-1) / ()= xj.1) for j=m

If all derivatives are positive or negative then

m n

total change =X | A((Z X yij/ Zngm) /AX)k |
k=2 i=lj=I

Else
m no
total change = X X ¥ | Ayj;/Ax |
i=1 j=1k=2

change per bin = total change / #bins

sum=0:1=1

First cut point for each continuous node is the first set of values
sum = sum + | Ayi/AX |

If sum < change per bin, theni=1+1 and go to 10

percent = (change per bin — ( sum — Ayi/Ax)) / (Ayi/Ax)

. xcut = x;.; + percent * (X; — Xi.1)
14.
15.
16.
17.

For continuous node j, ycut; = y;.i; + percent * (y;; — yi.i;)

sum = sum — change per bin

If #cut points < bins then go to 10, else go to 17

Last cut point is the highest value of the continuous node + 0.01 * highest value

. If more continuous chains exist, go to 1, else stop
19.

If duplicate cut points exist, eliminate the duplicates

Figure 4-7
Algorithm for Continuous Nodes with Continuous Parents/Children
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4.1.2 Continuous Nodes with Discrete Parents or Children

If a network contains a continuous node that has no continuous children or
parents, then the method described above must be modified. The principal concept of
measuring the change over the entire data set and placing an equal amount of change in
each bin remains the same. However, because there are no other continuous variables to
work with the information contained in the discrete parents and children must be used.
The derivative method is used to measure state transition changes in the discrete variables
in relation to the continuous variable.

Figure 4-8 shows an example network with a continuous variable having no
continuous parents or children. This example is created from a database collected from a
California prison study. In the study, prisoners are assigned a classification score. The
score is based on length of sentence, age, marital status and prior convictions. Prisoners
are then assigned to a facility based on the score. Multiple offenders have higher scores
and are usually sent to higher security facilities. The study then recorded if the prisoner
committed any misconduct violations. The purpose of the study was to look at the score

and the level of security of the facility as predictors of misconduct.
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MESpOnse

Figure 4-8
Prison Classification Network’

In this example, node “strike” is a discrete node with states “first”, “second” and “third”
that indicate whether a prisoner is a first, second or third time felon. Node “score” is a
continuous node with values from 0 to 79 reflecting the prisoner classification score.
Node “treat” is a discrete node with states “yes” and “no” indicating whether the prisoner
was sent to a maximum security facility. Node “response” is a discrete node with states
“yes” and “no” indicating whether this prisoner committed any misconduct violations
while incarcerated.

To discretize the continuous variable, all parents and children are first identified.
If a discrete node has states that are not numeric values, the states must be changed to
numerical values. The numeric values are ordered such that variable states are assigned

in the order in which they predominately occur in combination with the continuous

5 Data obtained from the UCLA statistics website at http://www.stat.ucla.edu/projects/datasets/prison.txt
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variable. This is done by calculating the average value of the continuous values for each

state of the discrete node. This is accomplished using the formula

n
avg; = X statej / n
=1

11s the number of states of the discrete node

n is the total number of continuous values corresponding to discrete state i

state; is the value of the continuous variable at index j

avg; is the average value of the continuous values in discrete state 1
The data is then sorted in ascending numeric order by sorting first on the continuous data
and then on each parent or child respectively. Duplicate continuous data points are
averaged as described in 4.2.1 to prevent an infinite slope. The derivative at each point is
then calculated using the same formulae as described above. The cut points are found

using the same method. Applying the derivative method to the example problem above

for five bins provides the discretization shown in figure 4-9.
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Figure 4-9
Five Bin Discretization for Prison Network

As can be seen in figure 4-9, the data is broken into bins by the amount of change. The
first bin from 0 to 31 is wide as all three parent/child nodes have relatively constant
values in this range. As the data begins to fluctuate further to the right, the bins are
spaced more closely together. The outputs for node “response” for input predictors

“score” and “treat” are shown in figure 4-10.
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Figure 4-10
Prison Network Response

As can be seen from the figure, nodes “score” and “response’ together are fairly accurate
predictors of misconduct. With this discretization, the data shows that for the lesser
security facilities, higher score does equate with higher misconduct. For maximum
security facilities, the probability of misconduct is fairly constant over the range of
scores. Misconduct for prisoners at the lower security facilities with low scores is about
the same as those at maximum security facilities with high scores. Looking at the raw
data of figure 4-9, one would conclude that misconduct is not strongly related to score as

it seems to be fairly constant across the entire range.
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The algorithm for discretization of continuous nodes with only discrete

parents/children is presented in figure 4-11.

1.

Locate the continuous node

2. Identify all parents and children

3.

10.
1.
12.

13

21

If discrete nodes are not numeric values, replace the states with numeric integers
in ascending order of the average of the continuous values associated with the
discrete state
Sort the data in ascending numeric order sorting first on the continuous node, and
then on each parent and child
If duplicate values of the continuous node exist, combine multiple values of the
other nodes by averaging
Find the derivative of each discrete node with respect to the continuous node
Ayi/AX = (Yi+1—¥j1) / (Xj+1 — Xj1) for j =2 to m-1
Ayi/Ax = (yj—yj-1) / (Xj— xj.1) for j=m

n m

total change =X X | Ay;i/Ax |
i=1j=2

change per bin = total change / #bins

First cut point = lowest value of continuous node
sum=0:1=1

sum = sum + | Ayi/AX |

. If sum < change per bin, then1=1+1 and go to 12
14.
15.
16.
17.
18.
19.
20.

percent = (change per bin — ( sum — Ayi/Ax)) / (Ayi/Ax)

xcut = x;.; + percent * (x; — Xj.;)

For continuous node j, ycut; = yi.;; + percent * (yij — yi-1;)

sum = sum — change per bin

If #cut points < bins then go to 12, else go to 19

Last cut point = highest value of continuous node + .01 * highest value
Stop

. If Duplicate cut values exist, eliminate the duplicates

Figure 4-11
Algorithm for Continuous Nodes with Discrete Parents/Children
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4.2 Limitations of the Derivative Method

The derivative method is very flexible and can accommodate linear, non-linear,

continuous and discontinuous data sets. One limitation the method has is with data sets

that are highly scattered. Because the method measures the total amount of change

across a data set and then places an equal amount of change into each bin, poor results

may occur if the algorithm mistakes a large difference between two closely spaced points

for a rapid change in the slope. An example of a data set with high scatter is shown in the

example of figure 4-12.
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Figure 4-12
WPF-360TL Infrared Receiver Performance Data
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This limitation can be overcome by pre-processing the data prior to using it in the
derivative method algorithm. The simplest method is to fit a curve through the data and
then sample the function of the curve. This data can be used for input to create the bin
discretization. After the network is constructed, the original data is used to learn the
probabilities of the bin states of the node. An example of the discretization of a

logarithmic curve fit through the data is shown in figure 4-13.
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B Cut Points
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Figure 4-13
Cut Points for FLIR Data Set

Although fitting a curve to the data provides an acceptable solution to overcome this

limitation, an alternative method that is used in this research is presented in chapter 5.
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A second limitation is use with nodes whose data within a continuous node results
in significantly different functions such as the input data shown in figures A-4 through A-
8 of appendix A. This is not a limitation of the derivative method, but a limitation of
Bayesian networks. A single continuous node can have only one set of ranges defining
the discretization of that node. If data within that node is very different with respect to its
slope, the derivative method will concentrate most of the cut points in areas such as a
non-linearity while placing few cut points in linear areas of more gradual change. This
results in very low resolution in the linear areas with corresponding poor performance. If
this condition exists, an alternative approach is to group the data into sets where the
response is similar and to create different models for different sets of data. This method
is used for the amplifier model of appendix A which had both linear and non-linear inputs
and outputs.
4.3 Substituting Probability Distributions into Continuous Node Tables

Another issue that must be addressed is the impact of the number of bins on the
accuracy of the answer. As an example, the electrical circuit shown in figure B-1 of
appendix B is tested for values of R = 1.8KQ, C = 100uF and Time = 0. Figure 4-14

provides a normal distribution of the results of 26 tests.
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Figure 4-14

LRC Test Data Distribution
From this data the 95% confidence interval is between 7.1 and 9.2 volts. The average test
data shown in figure 4-5 of eight different circuit configurations is used for Dirichlet
learning of node probabilities in the network provided in figure 4-15. A ten bin
discretization using the derivative method is used to create the network. The software
adds one bin from negative infinity to the lower cut point and a second from the highest

cut point to infinity. The addition of these bins is explained in chapter 6.
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Figure 4-15

Dirichlet Learning with Uniform Prior

This results in a poorly performing network returning a mean of 5.37 for the node
“Volts”. As can be seen in figure 4-15, this number is not in either bin with the highest
probability (6.9 - 7.76 or 7.76 - 9.19). This is because the learned network contains
substantial probability on values less than 6.9 volts, although under a Gaussian
distribution such values are extremely rare. This happens because the learning algorithm
assumes the observations are multinomial and the prior distribution is uniform, resulting
in a Dirichlet posterior distribution. The posterior bin probability is:

bin probability = Ngata / Niotar + 1

Naata 18 the number of data points that fall within a bin
Niotar 18 the total number of data points.



70

The one is added to the denominator of all bins as a uniform prior assumes each bin has
an equally likely probability prior to the introduction of the data set.

In figure 4-15, there are four values of node “Volts” that fall into the time range
0f 0.0 - 0.021 and have parents R = 1.8KQ and C = 100uF. Two values fall within bin
6.9 - 7.76 and two fall within bin 7.76 - 9.19. There are 12 bins that each start with one
value in that bin. Before learning begins, the probability distribution is uniform with a
probability of 1 /12 (0.083) for each bin. After learning of the four data points, the
probability is (1 + 2) / (12 + 4) or (0.188) for both bins 6.9 - 7.76 and 7.76 - 9.19. The
probability is 1 / (12 + 4) or (0.0625) for all other bins. For a given number of data
values as the number of bins is increased, the probability within each bin that contains
data decreases and the total probability in all bins which contain no data increases.

There are three possible ways that were considered to correct this problem. The
first consideration is to conduct many more tests to obtain enough data points to reduce
the probabilities in the bins that contain no data values. However, extensive testing
would be both time consuming and expensive and would negate any advantages to using
Bayesian networks for modeling. A second option is to assign higher confidence to the
data set by increasing the number of times that each point is counted during the Bayesian
learning process. If the network of figure 4-15 relearns the probability tables from the
learning case file data counting each case one hundred times, the resulting probability for

the node “Volts” is shown in figure 4-16.
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Dirichlet Learning with Non-Uniform Prior
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Applying the same parent conditions now results in a mean value of 7.8 for node “Volts”.

This results in improved performance with the mean value now within one of the bins
with the highest probability (7.76 — 9.19). Although improved, this option does not

provide a completely satisfactory answer. Based on the data, it is not likely that the

probability of a value in bin 6.07 — 6.9 is the same as the probability of having a value in

bin <0.343. The probability should be much higher in the former as compared to the

latter.

Learning performs so poorly because the learning algorithm does not make use of

all the information we have about the data. Specifically, the Dirichlet/Multinomial
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learning algorithm applies to categorical data, while these data are continuous and known
to be nearly Gaussian in their distribution. The third method increases statistical power
by including this information. For this research, this is implemented by overwriting the
CPT table of the continuous node with a normal distribution obtained from the data set
when the data is expected to be normally distributed. To replace the distribution, the
mean and standard deviation are calculated for all data of a node for a single set of input
states. In the circuit network example for R = 1.8KQ, C = 100puF and continuous node
“Time” bin 0.0 — 0.021 there are four values of “Volts” (two at time 0.0 with values of
8.60 and 8.61 and two at time 0.02 with values of 7.63 and 7.66) with mean 8.12 and
standard deviation 0.50. The cumulative normal distribution is then calculated at each of
the bin cut points. For the first bin (all values less than the first cut point) the probability
is the cumulative normal distribution at the lowest point. For all but the last bin the
probability is the cumulative normal distribution at the upper cut point minus the
cumulative normal distribution at the lower cut point. For the final bin (all values greater
than the highest cut point) the probability is one minus the cumulative normal probability
at the highest cut point. This ensures that all probabilities for each row of the CPT table

sum to one. An example of the node Volts using this method is shown in figure 4-17.
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Figure 4-17

The value of node “Volts” at the reference conditions is 8.23 + 0.66. This is very close to

the mean of 8.12 of the data. As can be seen in figure 4-17, the lower bins now have zero

probability and therefore no influence on the output. Use of this method allows

discretization of continuous nodes using a higher number of bins to obtain higher model

resolution without loss of accuracy. Either methods two or three will be used in this

research.

4.4 Comparison of Discretization Methods

Recent research compared two search methods and two scoring methods for both

time and accuracy [Xu, 2003]. The search methods were Hill Climbing (HC) [Pearl,
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1985] and Markov Chain Monte Carlo (MCMC) [Gilks et al., 1996]. The scoring
methods were Minimum Description Length (MDL) [Friedman and Goldszmidt, 1996]
and Bayesian Dirichlet (BD) [Heckerman et al, 1995]. Combining the combinations of
searching and scoring, this resulted in four different methods for the discretization
process: Hill Climbing Minimum Description Length (hcmdl), Hill Climbing Bayesian
Dirichlet (hcbd), Markov Chain Monte Carlo Minimum Description Length (mcmdl) and
Markov Chain Monte Carlo Bayesian Dirichlet (mcbd). The software to implement these
four methods was written in MATLAB®.

The derivative method was compared to each of these four methods by means of
two scoring metrics and the time it took the discretization algorithm to execute. The
comparison was conducted on four data sets: the cycle amplifier data of appendix A, the
LRC circuit data of appendix B, the aerodynamic wing lift data of appendix C and the
California prison study data of section 4.1.2. The prison data contained only one
continuous node, while all others contained more than one continuous node. Data were
separated into mutually exclusive training data sets and test data sets. Three sets of
training data and test data were constructed for each data set. The test set was determined
by a random number generator which selected approximately 10% of the total data from
each set. If data sets were ordered, the selection was made so as to evenly sample the test
cases over the data set. This was done by randomly sampling equal numbers from equal
time intervals on the amplifier and LRC data sets and sampling one angle-of-attack for
each wing shape. Discretization was first conducted using the comparative methods

which determine the number of bins using a user supplied maximum number and their
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respective scoring techniques for merging or splitting the data. The data were then

discretized using the derivative method using the number of bins determined by the
comparative method. All data runs were conducted on a 3.07 GHz computer with a
Pentium 4 processor and 1.0 GB of RAM.

The comparison was conducted by first using the training data set to calculate the
probabilistic relations between variables. The networks were then tested with the test
data set and scored using two methods: Log Loss and Spherical Gain. The equations for
these network scoring metrics are:

Log Loss = MOAC * (-log (P.))

Spherical Payoff = MOAC * (P, / J(j; sz))
where P, is the probability predicted for the correct state, P; is the probability predicted
for state j, n is the number of states and MOAC is the mean average over all cases’. The
comparison attempted to use inputs of a maximum of 10 bins for each method and 25
iterations per discretization cycle. These numbers caused the computer to hang up and
freeze for the wing and prison data sets. Because no error message was generated, it is
suspected that the problem is linked to the large size of the network and file for these two
data sets (wing has a variable with 5 parents and prison has 3917 cases in the data set).
Successful discretizations were obtained by reducing the maximum number of bins to 5
and the maximum number of iterations to 10. The Log Loss comparison for the test cases

is presented in figure 4-18 and the Spherical Payoff in figure 4-19.

® Definitions from the Netica User’s Manual.
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The results of this comparison confirm results from another study that indicate that
different methods of discretization have different results on different types of data sets
[Lui et al, 2002]. The results of this comparison show differences between the methods
on individual data sets, but the average of the four cases for each method is nearly the
same for both scoring metrics. Based on the test cases, the derivative method

demonstrates approximately the same performance as compared to the four other

methods.

The time required to execute the discretization algorithms was recorded for each

method. The logarithmic plot of time is presented in figure 4-20.
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The results agree with a previous study that Markov Chain Monte Carlo methods take
longer than Minimum Description Length [Xu, 2003]. In all cases the derivative method
was faster than either of the other comparative methods. The magnitude of the difference
can not be directly compared from figure 4-20 in that the comparative methods were run
in MATLAB® while the derivative method was run in Microsoft Visual Basic®. Because
the derivative method was running in a compiled program while the comparative methods
were not, some of the speed difference must be attributed to the difference between the
two programs. However, the magnitude of the difference is too great to be related only to
the differences in code, and a conclusion can be made that the derivative method is faster
than any of the other four methods. Further research is required to determine the exact
magnitude of this difference.
4.5 Discussion

The derivative method of discretization was developed when a review of
published methods found none suitable for use in the discretization of continuous data for
Bayesian network engineering models. The methods reviewed either provided poor
results during initial research or were deemed too complex and inefficient to provide a
viable alternative for comparison to equation-based models. As such, the development of
the derivative method is a by-product of this research effort. Based on a limited
comparison to a small sample of other methods, this dissertation will not attempt to prove
that this method is superior to any other published method or is optimally implemented as

described in this chapter. However, the results obtained using this approach and
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described in chapter 7 demonstrate this method has strong potential. There are a number
of follow-on research projects that should be considered.

Although the method is computationally efficient, it may not produce the best
discretization of data sets that can be obtained. The method always results in the same
number of bins for every node in a continuous chain unless duplicate cut points exist. A
better discretization may exist by allowing different nodes to have different numbers of
bins. A potential follow-on research effort might look at using the derivative method
using a large number of bins to create a starting discretization, and then using published
merge methods to see whether a better discretization can be achieved with fewer bins.
This might improve the time to converge to a solution for merge methods by providing a
better starting point.

Different implementations of the derivative method rules should also be explored.
The current implementation is to use equal-weighted averages for duplicate values of the
same X variable. An alternate approach would be to explore the use of probability
weighted averages. The method currently uses a manual input to determine the number
of bins for data discretization. This was useful for the research in that in most cases, a
fixed number of bins was desired for comparison of different modeling techniques.
Finding a method to determine the number of bins for the derivative method is another
area that should be explored. Automatic calculation of number of bins to achieve a given
accuracy would be one selection criterion. Development of metrics which would
minimize the number of bins for some criterion such as accuracy or resolution should

also be considered.
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It has been shown that informed methods of discretization provide better
structural learning than uniformed methods [Monti, 1999]. The current implementation
uses uniformed methods for initial discretization before structural learning, and then uses
an informed method to discretize the data again once the structure has been determined.
This may result in a good discretization of variables in a less than optimum structure.

The software as implemented is computationally efficient and executes relatively quickly.
An interesting area for future research would be to look at an iterative approach to
structural learning where the informed discretization data is used to relearn the structure
and then the data is discretized again on the new structure. The process would continue

until it converges on one or more structures.



5. Building Models When Data are Incomplete

5.1 Adjusting Data Sets for Missing or Incomplete Data

When learning node probabilities from data sets, the quality of the final network
will be influenced by the quantity and completeness of the data. Unfortunately, model
builders may not have the luxury of ordering custom data sets and frequently must work
with what is currently available. These data sets may contain cases in which the
measurement was missed or was unavailable. Measurement of the data might have
resulted in high concentrations of data in some areas with a scarcity of data in other areas
of interest. Engineering trade studies frequently need data for configurations which have
never been built or tested. To be useful as an engineering modeling tool, Bayesian
networks must be able to model responses for conditions which have not been previously
measured. In all of these situations, there is a need to generate predictions for missing or
incomplete data.

There are a number of manual techniques that could be applied to augment the
database. Adjustment by human judgment is one method that is specifically evaluated in
this research. A second method is the use of computer predictions to augment the
database. A computer algorithm creates a model of the available data and then uses the
model to generate predictions. This method is referred to as “borrowing of strength”

which refers to the use of available data to make predictions where data are sparse [Kreft,

81
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1996]. This method is currently used in some predictive applications by the U.S. Census
Bureau [Judson, 2002].

In order to make the predictions, a regression model must be created for the node
or nodes for which values are needed conditional on their parents. Such a regression
model would express a probability distribution of the node as a parametric function of its
parents. The most common type of regression model consists of a deterministic function
plus a normally distributed random noise term with zero expectation and standard

deviation (o). This can be expressed as

y = f(x,0) + N(0,0°)

y is the variable of interest

f(x,0) is the equation conditional on the parent states x and 0

N(0,67) is the noise component normally distributed about mean

Zero
There are many methods that can be used to estimate the parameters of this regression
model. One method would be to fit a curve through the data. This is an acceptable
approach as long as all data for a node consists of continuous linear functions.
Unfortunately, this is not the case for many engineering applications. Real data may be
discontinuous such as the input data shown in figure A-9, or non-linear as shown in the
input data of figure A-10 of appendix A. Attempts to fit curves to these data sets would
result in a poor representation of the data set and consequent inaccurate predictions. In
order to handle discontinuous or non-linear data, the approach taken in this research is to

use a neural network to create a semi-parametric regression model of the available data.

This model is then used to impute missing values for random variables.
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5.2 Neural Networks

The principal advantage of a neural network is that it is capable of adaptive
learning of very complex problems (Maren, 1990). Because this research effort is
looking at alternatives to equation-based modeling, the ability to make predictions
without creating equations to describe variable relations satisfies the research goals.
These networks can predict additional values within the range of the training data set.
Neural networks can also handle both non-linear and non-continuous functions. As
implemented in the research, the neural network will be trained using the subset of the
input data where all values are present for each case. Once trained, the network will be
used to augment the input data prior to construction of a Bayesian network.

There are different types of neural network applications available for
consideration. They fall into five basic categories: prediction, classification, data
association, data conceptualization and data filtering. The primary use of a neural
network in this research is for prediction. Types of predictive neural networks include
the back-propagation, delta bar delta, extended delta bar delta, directed random search,
higher order or functional link, and the self-organizing into back-propagation. Of these
all use the feed forward back-propagation method of learning described below with some
modifications associated with the specific type except for the directed random search
network [Anderson and McNeil, 1992]. Feed-forward back-propagation networks
(usually referred to as the back-propagation networks) are available in a variety of
commercial applications. A back-propagation neural network was therefore selected for

use 1n this research.
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A typical back-propagation neural network is shown in figure 5-1.

Hidden
Layer

Figure 5-1
Example Neural Network

The network consists of an input layer, one or more hidden layers and an output layer.
The input layer nodes feed the input values into the rest of the network. Connections
between layers are bi-directional. Data values move from inputs through the hidden
layers to the outputs during feed forward operation. During learning error corrections are
propagated back through the network starting from the output nodes and running upward
through all hidden nodes from the bottom to the first hidden layer.

All hidden and output nodes in the network have the structure shown in figure 5-
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Output

Figure 5-2
Neural Network Node

These nodes can have any number of inputs. During feed forward operation, the node
first calculates the sum of all inputs times their weights. A transfer function is then
applied to the sum. This function transforms the output into a number between zero and
one (minus one and one in some software packages). There are several transfer functions
that can be used. All functions have either a ramp, bell or modified S-shaped curve that
runs asymptotically along the X-axis approaching either the maximum or minimum value
[Maren et al, 1990]. The type of transfer function is manually selected during network
construction while the weights for each input connection are calculated during the
learning process described below. All inputs must also be scaled to values between zero
and one. Outputs, which are all values between zero and one, must be scaled in the
reverse direction from a decimal value to the actual value. Most software packages,
including the one used for this research, perform the scaling task automatically so that it

is transparent to the user.
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The feed forward back-propagation method of learning iteratively adjusts the
values of the weights for each hidden and output node during the learning process. In the
first step, the input values are read into the input nodes and these values are fed forward
through the hidden nodes until an answer is calculated at the output level as described
above. The calculated output is then compared with the target output which is the value
of that node in the training data given the input data. To correct the weights, the
Generalized Delta Rule expressed in terms of a Delta function is used. This function is
applied to every connection weight after each presentation of a training data set. The
weights are then updated using

weights,ew = weightsgq + a * Delta(weights,q)
where o is the learning rate that controls how fast the weights are changed. The Delta
function is proportional to the negative of the derivative of the error with respect to the
connection weights [Maren et al, 1990]. The actual form of the Delta function is
dependent on the transfer function chosen for the node. The greater the slopes of the
error with respect to the weights, the greater the change that is applied to the weights.
The error corrections are propagated backward through the network to update the weights
in each node. This process continues until the weights in the network converge to values
that minimize the error between the calculated values and the target values. The speed of
convergence is affected by the learning rate alpha (o). Low values of alpha will cause the
weights to be adjusted slowly resulting in slow convergence on final weights. A large
value of alpha will result in faster convergence, but may cause the corrections to

overshoot causing network learning to become unstable and the weights to diverge from
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the solution. When learning is complete the relations between variables are stored in the
weights of the hidden and output layers of the network.

Unlike Bayesian networks, there are no software packages available that can learn
a network structure from a data set. Construction of neural networks is primarily a
manual operation. Like Bayesian networks, developing good neural networks can be as
much an art as it is a science. The model builder must manually choose the number of
layers, the number of nodes in each layer and the transfer function for each layer. These
are all critical decisions which affect the quality of the final network. Increasing the
number of layers and nodes in the hidden layers will improve the final fit of the network
to the data. However, just as in curve fitting it is possible to “overfit” the neural network
to the data set.

If a network is overfitted to the data, the network provides very accurate
replication of the learning data set but poor performance predicting values between
learning set points. In such cases, neural networks have poor generalization capability to
any values outside the training data. This problem can be avoided by limiting the number
of hidden layers and hidden nodes. Although a back-propagation network must have at
least one hidden layer, 80% of all problems can be solved with a single layer [DeClaris
and Roberts, 1997]. The most complex problem can be solved with three hidden layers
[Anderson and McNeil, 1992]. Additional research has been done to look at the total
number of nodes in the hidden layers. For the functions evaluated in the research, the
selection of two or fewer nodes resulted in underfitting of the data while selection of nine

or greater nodes resulted in overfitting [Zhong and Cherkassky, 1999]. Many neural



88

network software packages also allow designation of part of the input database as test
cases. This data is then separated from the learning data set. The network is tested
periodically during the back-propagation learning process with the test data used to check
how well the network is learning the variable relationships.

Neural networks are usually fully connected such that every node in one layer has
an input connection from all nodes in the layer above it and output connections to all
nodes in the layer below it. If nodes have no relation, the network will automatically
determine this during the back-propagation learning process and weighting values near
zero will be calculated for connections that do not exist in the data relations. For this
research, networks are constructed with the number of input nodes equal to the number of
columns in the data set with no missing values. The number of output nodes is set to the
number of columns with missing data values. The number of hidden layers is fixed at
two. This number was determined by running tests on some of the data sets. The tests
found that there was significantly better network performance using two hidden layers as
compared to one, but no significant difference between two hidden layers and three. The
number of nodes in each hidden layer is a step down value from the layers above except
that the minimum number of nodes in the first hidden layer is two. This insures that each
network has at least three total hidden nodes to prevent underfitting. Each network also
has fewer than eight hidden nodes to prevent overfitting. All networks are hybrid
networks with sigmoid transfer functions in the first hidden layer and the output nodes

and Gaussian transfer functions in the second hidden layer as shown in figure 5-3.
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Figure 5-3
Research Neural Network Structure

The transfer function type was determined by experimenting with the different functions
and comparison of single transfer function networks with mixed hybrid networks.
Although the combination sigmoid-Gaussian hybrid network performed the best, the
difference was not highly significant. Other combinations of transfer functions provided
networks that also performed well.
5.3 Using Neural Networks in Bayesian Network Construction

The primary purpose of the neural network in this research is to impute missing
values to estimate probability distributions for configurations in which there is no data.
For continuous variables, this is a straightforward process with software sending the
known values to the neural network as inputs and then retrieving the output variables
which are then used to fill in missing entries in the database. Discrete variables require

additional steps. All inputs and outputs of neural networks must be numeric values.
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Non-numeric discrete states are changed to integer values using the same approach as
described section 4.1.2. If a predicted value is discrete, the output value from the neural
network must be converted to one of the discrete states. If the discrete values are
numeric, the values are rounded up or down to the nearest integer value. If the values are
non-numeric, the neural network outputs are rounded up or down to the nearest integer
value and then converted back to the non-numeric using the reverse of the process of
4.1.2.

A secondary use of the neural network is to eliminate the data scatter pre-
processing requirement described in section 4.2. During learning, the neural network fits
a numeric solution to the data. By using neural network predictions in place of the
database values, the data set is effectively smoothed. An example of the method applied
to the FLIR data set of figure 4-11 and then discretized using the derivative method is

shown in figure 5-4.
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Figure 5-4
Neural Network Smoothing Example

As can be seen, the cut points for figure 5-4 are very similar to the cut points in figure 4-
13. For this research, if the neural network input option is selected, the output of the
neural network is used for calculation of the bin dividing points using the derivative
method described in chapter 4. If the data set is smooth, the neural network output will
be very close to original data set with little impact on cut point selection. If the data set is
scattered, the neural network smoothes the data insuring proper execution of the
discretization algorithm. This eliminates the data scatter limitation of the derivative

method allowing direct use of scattered data sets.
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5.4 Transforming Neural Network Outputs into Bayesian Network Probabilities

If there are missing values in the input data set, those values will be calculated by
the neural network resulting in a new data set containing a mixture of the input data set
and neural network predictions. This data can be used to provide a larger number of data
values for each bin to reduce the influence the number of bins has on output probabilities
if Dirichlet learning is used. It also can be used to ensure that even if the original data set
has gaps that would result in bins that have no data values, the final learning set will have
the gaps filled in by the neural network predictions. Two methods are considered for
handling the mixture of learning data with neural network predictions as described below.

The first method is to create a very large data set by using an input data set with a
large number of missing data values. This data set is then used as the training data for
Dirichlet learning of the probabilities. Although viable, this method has significant
shortcomings. Calculation of a very large data set incurs significant computational time
penalties and is therefore not efficient. The final probabilities will still have residual
values in bins far from actual data values in the learning set as described in section 4.5.
Finally, the probabilities do not take into account the additional uncertainties introduced
into the output data set by the introduction of neural network predictions.

A second and better solution is to calculate the uncertainty between the neural
network predictions and the training data and add it to the uncertainty of the data values
within each bin. This method allows direct calculation of probabilities without
generating overly large data sets. It also includes the uncertainty due to the errors

introduced by the neural network predictions. Using the normal distribution substitution
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method described in section 4.4, the standard deviations are calculated for the data points
that fall in each bin of a designated continuous leaf node. The variance of the data within
each bin is then calculated by squaring the standard deviation. The uncertainty of the
neural network data can be calculated as a variance using the formula

om = (Learning Data — Prediction)"2

O 1S the variance of the neural network data

Learning data is the value of a point in the input data set

Prediction is the neural network output for the same set

of inputs as the Learning Data
This results in a variance for each point in the learning data set. The model builder is
then faced with a choice of which variance or combination of variances to use for the
uncertainty due to the neural network prediction. For this research, three options are
considered for determination of this variance: nearest value, average and maximum.

The nearest value option searches the input data set and finds the variance

associated with the set of input values that is closest to the input values used with the
neural network prediction. This option is most suitable for data that is not scattered and

where it is reasonable to assume that the error in the neural net output will be similar

under like conditions. An example is shown in figure 5-5.
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Figure 5-5
Neural Network Prediction Accuracy

The nearest value option provides the most accurate prediction of error under the
specified assumptions. However, this option requires significant computer run time to
execute if the number of missing values is large and/or the database of complete data
contains a large number of values.

The average variance option is best suited for use if the data set is scattered. In
this case there may be measurement errors in the input data set. The average variance
provides a reasonable variance estimate across the entire data set under such conditions
and prevents local extremes that would occur if the nearest value method is used. The

average value option would be appropriate for input data such as that shown in figure 5-4.
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The maximum variance is the highest variance found between the learning data set and
the neural network prediction across the entire data set. This method is used with data
sets which are not scattered. This provides the most conservative error estimate of the
three methods. Both the average and maximum options are more computationally
efficient as compared to the nearest value option.
Once a variance is selected, a new normal distribution is calculated that
incorporates sources of uncertainty from both the data and the neural network. If all
values that fall within a single bin for a unique set of inputs are data values from the
learning set (i.e. no neural network predictions), then the procedure described in section
4.3 is used. However, if any values within the bin range are generated by the neural
network, a new standard deviation that includes both the variation of data values within
each bin plus the variation introduced by the neural network predictions is calculated.
The formula for calculating the total standard deviation is
std deviotar = ((std devgata)2 + 61n)"0.5
std deviora 1s the standard deviation for both sources of
uncertainty
std devga, 1s the standard deviation of the data for the inputs
Gnn 18 the variance of the neural network data

The normal distribution is then calculated using the total standard deviation and the

probabilities replaced in the node probability tables as described in section 4.3.

5.5 Discussion

Integration of neural networks with Bayesian networks combines the strengths of

both artificial intelligence agents while eliminating some of the individual limitations of

each. The neural network allows interpolation of data values not contained within the
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learning data set. It provides smoothing of scattered data sets effectively mitigating one
of the limitations of the derivative method described in section 4.2. In combination with
the discretization methods described in chapter 4, this allows the creation of engineering
models that can predict outputs of any set of input values bounded by the learning data
set. Using a Bayesian network as the final product allows reasoning with incomplete
inputs. Predicted outputs are qualified as probabilistic distributions providing a range of
values over which the output may lie. This research supports a general trend in which the
areas of neural networks, statistics, generative models and Bayesian inference are
coalescing into a single field of Soft or Natural Computing focused at drawing
conclusions from incomplete, noisy data [Smith, 2001].

Implementation in this research uses a single, manually constructed neural
network for prediction. This represents one of the few, non-automated tasks in the
Bayesian network construction process. Additional research should be conducted to
explore computer generation of the neural network structure. While development of an
algorithm to select the input and output nodes would be straight forward, selection of the
number of hidden layers and number of nodes in each of those layers is the challenge.
The algorithm must choose a network structure that provides enough layers and nodes to
adequately fit the network weights to the training data without making the network any
more complex than is necessary. One method that has been developed to address this
issue is Vapnik-Chervonenkis (VC) theory used for estimating data dependencies from
finite data samples. This provides a framework for choosing one model from a set of

possible models using Structural Risk Minimization (SRM). SRM scores and orders the
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model set according to their complexity. Model selection is then accomplished by
choosing a minumal analytic upper VC bound of the prediction risk [Zhong and
Cherkassky, 2000], [Cherkassky and Mulier, 1998]. Use of multiple regression models is
another area that has been explored in recent research. Use of a single neural network
assumes that all data was generated by a single, unknown model. Better solutions may
exist by modeling the data with two or more regression models [Cherkassky and

Yungian, 2002a] [Cherkassky and Yungian, 2002b].



6. Research Software Implementation

To conduct the proposed research, a software package capable of creating
Bayesian network models from data sets is required for comparison to manually
constructed networks. A search of existing applications found no software package
suitable for creating engineering models from data sets containing mixtures of discrete
and continuous variables. The primary deficiency was the absence in available packages
of methods for intelligent, simultaneous discretization of multiple continuous variables.
This led to the development of the derivative method of discretization which is
implemented in the research software package described below. The software package,
BN Builder, integrates new code to implement the procedures described in chapters 4 and
5 with four third-party software packages providing the rest of the functionality required
to construct a Bayesian network from a data set. Integrating existing software to the
maximum extent possible minimized the amount of new code development required to
perform the research tasks with respect to computer constructed models. The software

architecture and data flow are presented in figure 6-1.
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Integrated Software Architecture

6.1 Supporting Software Applications

Microsoft® Excel is used as the database input file format. This is a natural

choice because many data sets are stored in this format. Furthermore, because Excel can

read databases stored in many formats, there is minimal need for manual transformation.

The Excel workbook also provides an output record of processes performed during

execution of the BN Builder program. During the build process, extra worksheets are

added to the Excel workbook and additional data is generated and written to these
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worksheets. This not only assisted in debugging during software development, but
allows anyone constructing a model to see the details of the numerous intermediate
operations carried out during construction. Excel also provides built-in functions for
many of the operations required during the build process such as sorting, calculation of
various statistics and generation of distributions.

Bayesian network structure learning was performed by BN PowerConstructor,
one of the modules in the BN PowerSoft collection by Jie Cheng of the University of
Alberta, Canada. Because BN PowerConstructor works only for discrete variables, BN
PowerSoft provides a Data Preprocessor program which discretizes continuous variables
using either the equal frequency or equal width method of unsupervised discretization.
The BN PowerConstructor program constructs belief networks by using conditional
independence (CI) tests. In general, it requires CI tests to the complexity of O(N*); when
the attribute ordering is known, the complexity is O(N?) where N is the number of
attributes (fields) [Cheng et al., 1997]. The resulting structure can be edited within the
PowerConstructor program and saved in most common formats used by commercial
Bayesian network software packages.

Output networks created using BN PowerConstructor are not suitable for use in
this research. The first problem is that the nodes are discretized using uninformed
methods resulting in poor performance as previously discussed in section 3.3. A second
problem is that the output networks contain all discrete nodes with non-numeric or string
state names. All numeric values are translated into strings by placing an “x” in front of a

truncated portion of the number. Discrete numbers are truncated to the three right digits,
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while continuous numbers are truncated to the left three digits. This results in a discrete
numeric node with states of 1000 and 1800 in the data set having states of x000 and x800
in the output network. This not only prevents the states from being set by entering
numeric values, it is confusing even when manually entering and retrieving the state
values. This also precludes the integration of these networks with other Bayesian
networks that use numeric values. Because of these limitations, networks created using
BN PowerConstructor are only used to provide the relationships between variables of the
network.

Netica, by Norsys Software Corp., serves two functions in the architecture: input
of structural relations and output of the finished network. Netica version 2.29, an
experimental beta version not yet available to the general public, is used for this research.
This version is used because it contains the command set for handling of continuous
variables in the Visual Basic programming environment; commands not available in the
current commercial version of the software. If the relationship between variables is
known, the structure is entered into Netica using the graphical user interface. The user
enters the nodes, names the nodes with the variable names that match the column labels
in the input database and draws the arcs showing the relationship between variables. The
input Netica file, whether created by BN PowerConstructor or manually entered by the
user, only provides variable relationship information. All other information is discarded
by the BN Builder program. Therefore, no variable type, state names, ranges, etc. needs

to be entered during manual construction.
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The output Bayesian network is reconstructed in Netica format by the BN Builder
software package. Netica version 2.29 contains a COM interface with the Netica engine.
This provides a software command set that allows any operation that is supported in the
graphical user environment to be invoked within the Visual Basic program environment.
The BN Builder software makes use of these commands to completely reconstruct the
network using the algorithms described in chapters 4 and 5. The output is a complete and
ready to use Bayesian network file.

Qnet 2000 by Vista Services, Inc. is a software program for constructing, training
and recalling predictions using neural networks. This package comes with a graphical
user interface for constructing and training back-propagation neural networks. The
software also comes with a Dynamic Link Library (DLL) file that provides software
commands that can be used to send and receive data from the neural networks within the
Visual Basic programming environment. Neural networks are created manually as
described in section 5.2. The neural network is an optional input to the software build
process. During program execution, BN Builder sends the input values to the neural
network whenever predictions are required. The neural network generates the output
variable predictions for the input data values which are then returned to the main
program. These values are stored in the Excel workbook for use as needed in the build
program. Neural network predictions are tagged with a blue background color in the
spreadsheet cell so that the program can identify which values of the database are inputs

and which values are neural network predictions. This information is needed for
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calculation of the node probabilities if the normal distribution option is selected as
described in section 5.4.
6.2 BN Builder Research Software

Microsoft® Visual Basic 6.0 was selected as the programming language for
integration and custom component software because it can be compiled into an
executable program for rapid execution, is compatible with integrating the supporting
applications mentioned above and is the language most familiar to the developer. The
application was constructed using a spiral development process and modularization of the
functionality. Extensive documentation is included in the form of comments within the
software code. The modules are stand alone functions such that there are no subroutine
calls within one subroutine invoking another subroutine. This allows the direct addition
or substitution of other functions and subroutines, even those written in other languages,
so long as they conform to the Visual Basic calling convention. Although the program
was specifically designed for this research, the architecture was designed to
accommodate easy insertion of additional functionality or modification of the program
for future research.
6.2.1 Graphical User Interface

The user interface screen provides the user selectable options for Bayesian
network construction. The input screen also provides outputs that are useful for
monitoring of the construction process. The user interface screen is presented in figure 6-

2.
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Graphical User Interface

The functionally of each control on the user interface page is described below:

e “Build Status” window - provides feedback to the user on which of the operations

described below is currently being executed by the program. The window is

updated each time one module finishes and the next one begins execution.

e “Maximum Number of Discrete States” - up-down select button allows selection

of the threshold for determining if a node is discrete or continuous. If a node has

a number of states less than or equal to this value, the node will be treated as a
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discrete node in the final network. If the number of states is greater, then the node
will be treated as a continuous node.

“Number of Continuous Node Bins” - up-down select button selects the number
of bins into which the data for continuous variables is discretized when the
derivative algorithm is executed. After the determination of the bin cut points, the
software will always adds a bin from negative infinity to the lowest cut point and
from the highest cut point to positive infinity. Because the derivative method
places cut points based on change, it does not guarantee that the maximum and
minimum values from the data set are captured when determining the lowest and
highest cut points. The addition of these two ranges ensures that no errors occur
if data values outside the maximum and minimum limits of the bins are present
during learning of the probability tables.

“Continuous leaf node probabilities” — determines the probability distribution in
continuous leaf nodes. If the “Dirichlet” option is chosen, then Dirichlet learning
with a uniform prior will occur. If the “Normal” option is selected, then the final
probability tables for continuous leaf nodes will be overwritten with a normal
distribution with parameters estimated from the data as described in section 4.3.
“Neural Net” — determines if a neural network will be used to generate missing
data values and smooth the input data set. If the “Use Neural Network™ option is
selected, then the “Open Neural Network™ option becomes visible on the right
side of the screen. This option is used to specify that the user has constructed a

neural network and wants it to be used during network construction. If the “No
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Neural Net” option is selected, the input data must not contain any blank cells.
The open option will not be visible and the input data set values will be used for
discretization.

“Open Database File” - used to open the Excel spreadsheet containing the data
set for the model. The data must on “Sheet]” of the workbook. The names of the
nodes must be in the first row of each column and there must be no completely
blank rows or columns within the data set. During execution, the number of rows
and columns found in the input database is displayed.

“Open Netica Network™ - used to open the file containing the graph representing
the dependency structure among the variables. This file must be in a format
compatible with the Netica software application. The nodes in the network must
exactly match the column labels in the database input file. The one exception is
that when BN PowerConstructor discretizes variables, it adds a “_d” to the end of
the variable name. The BN Builder software recognizes this tag and will
automatically change its name back to the original.

“Open Neural Network™ - used to open a neural network. This option is only
visable if the “Use Neural Network™ option is selected. The network must be in a
format that is readable by the Qnet 2000 software program. The input and output
node names must match the column labels in the input database. The input data
columns must be ordered so that the input nodes come first with the output nodes
at the end. If the network is successfully opened, the number of input and output

nodes is displayed.
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e “Build Network” - executes the program. This option is selected after all the
above inputs have been entered. When the software has completed the network
construction, a “Done” message appears in the “Build Status” window.

e “Exit” - closes the BN Builder program and all other support applications. The
user is provided the option to save the Netica output file and the Excel workbook
including all the extra worksheets added during the build process as each of these
applications closes.

e “Run Time” - displays the number of minutes from the time the user interface is
first displayed until the final network construction is completed.

6.2.2 Software Execution

The software code executes a series of functions as shown in figure 6-3.
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Software Execution Sequence

All modules in figure 6-3 are individually called functions in the software package with
the exception of the last three which are all part of the network reconstruction operation.
Program execution begins when the “Build Network” option is selected from the user
interface. The program first checks the input Excel database file and counts how many
rows and columns are in the database. It next checks to see how many unique states are

contained in each column. This information is then used to determine whether each node
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is discrete or continuous in the final network. This determination is made based on the
user set threshold for defining the maximum states allowed for a discrete node.

Once all node types are identified, the program will check to see if the neural
network option is selected. If it is selected, the program looks for any cells with missing
data. If empty cells are found, the software sends the available data in each row as inputs
and retrieves the outputs which are then placed in the empty cell(s). Non-numeric
discrete states must first be transformed into integers using the process described in
section 4.2.2. Outputs for discrete variables are transformed back into the discrete state
values for numeric states or the descriptive states for non-numeric values using the
reverse of the same procedure. After empty cells in the database are filled in with
predictions, the database is rechecked to see if the number of unique states has changed.
If the neural network option is selected, the program adds a new worksheet to the Excel
workbook and will create a new data set by sending the input values to the neural
network values and retrieving network predictions for the outputs. This new data set is
then used for discretization and insures that the derivative method is not influenced by
scattered data sets as described in section 5.3.

The next operation is to open the Netica input file and retrieve the network
structure. The program creates a matrix of the arcs identifying the variables and direction
of the arcs. All other data in the network is discarded. The variable relations are used to
set the arcs when the network is reconstructed, and is also used for the derivative method
discretization process to identify the continuous node chains. If discrete numeric states

exist, the data is sorted in numeric order. This operation insures that when the final
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network is constructed that the discrete numeric state nodes will have node states that go
from the lowest number to the highest number. The software then calculates the ranges
of all continuous variables by discretizing the data in the database. If the neural network
option was not selected, the program discretizes the data set in the input data set. If the
neural network option is selected, the program uses the neural network predictions for the
outputs of the neural network in place of the data set values. The program then
reconstructs the Bayesian network.

To reconstruct the network, the program first opens the Netica software
application. It then inputs the nodes in the order they appear in the spreadsheet placing
them in offsetting rows on the screen. In addition to the node name, each node is
declared discrete or continuous according to the earlier determination of node type. Arcs
are then added between the nodes based on the structure retrieved from the input
network. If a node is discrete, the states of the node are set based on the states found in
the input data set. If a node is continuous, the ranges of the bins are set based on the
discretization results. The program then uses Dirichlet learning with a uniform prior to
calculate the probabilities in each node from all the cases in the data set which includes
the input data plus all predictions generated by the neural network. The software also
saves the data in a file having the Netica case file format. This file can then be used to
relearn the node probability tables as described in section 4.4 when a non-uniform prior is
desired. If the “Dirichlet” option is selected, the network is finished and the program will

show a “Done” message in the status window. However, if the “Normal Distribution”
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option is selected, the program will recalculate the probabilities of all continuous leaf
nodes.

The normal distribution option is implemented to change the probability
distribution of continuous leaf nodes. Only leaf nodes are implemented at this time due
to the nature of the research. Because the research is primarily comparing engineering
models, the root nodes are usually the inputs to the system and the leaf nodes are the
outputs. The data sets are expected to have Gaussian distributions of the output variables.
The software is implemented to provide the option of replacing the distribution of
continuous leaf node probability tables with a normal distribution estimated from the
data. This option provides a more accurate probability distribution in the node as
explained in section 4.3. Additionally, if neural network predictions are used,
uncertainties introduced by inclusion of neural network predictions are also included.
This implementation is expected to maximize the predictive accuracy of the output
Bayesian networks in both the central tendency and the spread of output solutions.

6.3 Extend Bayesian Network Integration Blocks

Another aspect of this research is to explore the integration of equation-based
models with Bayesian network models. In this research, equation-based models and
simulations are constructed and run using the Extend modeling and simulation software
package. This package comes with a variety of capabilities including animation for
visualization of models or simulations. It also comes with extensive libraries of modeling
blocks that can be linked together to create a model. Neither this software package nor

any other M&S software package investigated contained the capability to integrate a
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Bayesian network into a model. This required the development of a custom library of
function blocks to enable the Bayesian network integration within the Extend modeling
environment.

Each block in the Extend libraries is a visual representation of computer code
written in a language called ModL. Users who are proficient in code writing can create
their own blocks using this language. The Netica Bayesian network software package,
chosen for this research, comes in two versions: a graphical user package previously
described in section 6.1 and a set of C language Application Programming Interface
(API) functions. Unfortunately, it is not possible to call the Netica API functions directly
from the Extend modeling environment. This is due to the ModL language using a Pascal
format for strings while the Netica functions use a C format. Although numbers can be
passed, no alphabetic characters are compatible. This problem was overcome by
developing a number-character translator written in C++. To access a Netica API
function, the Extend ModL code first translates all character strings to their ASCII code
values and creates a numeric vector of the numbers. The code then calls a C++ function
passing the vector. The translator converts the numbers back to characters, assembles
them in strings and then invokes a Netica API function. Only numbers are returned by
the Bayesian network to the Extend modeling environment. If a return value requires a
string answer such as the most likely node state for a discrete node, the answers is
returned as the state index number and then translated to the state name in ModL.

In order to accomplish this integration, a custom set of blocks was developed to

invoke one or more of the Netica API functions. These blocks provide most of the
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functionality of the graphical user software package. The blocks are color coded to allow
for easy identification of the type of function it performs as described below. Red blocks

are used to open and compile a network.

Start Network

i

Start Network — Initializes the API with the user license, opens a network and
complies the network.

Open Network

ﬁ Open Network - Initializes the API with the user license and opens a network.
This block is used for networks with no entries in the probability tables.

Compile BN

EGompile BN — Compiles the network.

Light blue blocks are used to send data from an equation model to the Bayesian network.

Set Node State

Set Node State — Sets a discrete node to a specific state by state index number.

Set Utility Value

Set Utility Value — Sets the utility value in a utility node.

Set Binomial Finding

Enter Binomial Finding — Enters a finding into a discrete node with two
states.
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Set Node Value

Set Node Value — Set the state of a discrete or continuous node with a numeric
value.

Enter Finding

.Enter Finding — Set a discrete node state by state name.

Dark blue nodes are used to update the network after states have been entered.

Update Node
Probabilities

E I Update Node Probabilities — Updates the node probability tables based on the
current states of the nodes in the network.

Retract Findings

@ Retract Findings — Resets all node findings that have been entered.

Green nodes retrieve data from the network for use by the equation model.

Get Belief

Get Belief — Returns the probability that a discrete node is in a specific state.

" Get Mean — Returns the mean value of a continuous node.

Most Likely Value

Most Likely Value — Returns the mode of a continuous node.

Get Node Statistics

Get Node Statistics — Returns the mean and standard deviation of a
continuous node distribution.
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Get Node Value

Get node value — Returns the numeric value of a discrete node.

Get Decision

" Get Decision — Returns a decision from a decision node.

Most Likely State

valie I Most Likely State — Returns the numeric state index of the most likely state

for a discrete node.

Yellow blocks are used to save or close a network.

Save Network

Close BN

.Close BN — Closes the network and frees the memory used by the network.

6.4 Discussion and Future Research

Save Network — Saves the network under a new name.

There are numerous improvements and future research studies that could be done
with the BN Builder software. Some potential areas include algorithms to determine the
number of bins for discretization, integration of the BN PowerConstructor engine into
BN Builder, interleaved structural learning and discretization, and computer generated
neural networks. The current software uses a manual entry to determine the number of
bins for continuous variable discretization. This was useful for creating networks with a

specific number of bins for comparison to networks created using other methods.
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However, if network storage size is an issue, it would be useful to develop metrics which
balance the number of bins with accuracy, resolution or some other network parameter.
BN PowerConstructor is currently implemented as a separate, stand alone
program. The program is executed once at the beginning of the process as shown in
figure 6-1 only if the variable relationships are not known. BN PowerConstructor is
implemented with an Application Programming Interface (API). This would allow direct
integration of the structural learning functions within the BN Builder program. This
could reduce the time required to execute the construction process. It would also allow
interleaving of structural learning with discretization. This could potentially improve the
final structures by alternately discretizing the continuous data based on the structure and
then relearning the structure based on the discretization until the network converges.

If the neural network option is used, the network must be constructed and
trained before it can be used as an input into the Bayesian network construction.
Construction of the neural network by computer would further reduce the human time
required during computer generation of Bayesian networks. Algorithms that produce
multiple networks and then choose the best representation of the training data or
algorithms that pick a best method based on the number of variables and type data are
possible areas for future research.

The neural network integration is currently implemented to generate missing data
for the output(s) of the system being modeled. This requires a single neural network to
make the predictions. Some problems might have input data sets missing data values in

all of the columns. In order to predict missing values under these circumstances, multiple
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neural networks could be used. Each neural network would have the variables with data
values as inputs and the missing variable(s) as outputs. The software could be
implemented to choose the appropriate neural network for each instance of a missing data
entry.

The Bayesian network integration library and translator software was developed
to demonstrate the ability to integrate Bayesian networks and equation-based models.
Although successful, the current implementation is far from optimum due to the
incompatible data formats of the two software packages. Execution is slow due to the
multiple translations required to pass data back and forth between the two software
packages. A different modeling and simulation package has been identified that uses a C
format for its variables. Any follow on research will investigate a more direct integration

with the Netica API functions.



7. Comparison of Modeling Methods

The primary purpose of this research is to compare the time of construction and
accuracy of equation-based models to Bayesian network models. The research uses
equation-based model results as the baseline for comparison to three different methods of
Bayesian network construction: manually created networks with probabilities assessed by
human judgment, manually constructed networks with formulae used to create
probability tables, and computer-constructed networks using the software described in
chapter 6 learning both structure and probabilities from data. The three types of models
are compared to the equation-based baseline in both accuracy and time to construct

resulting in the six hypotheses listed below.

Hypothesis #1 A

Null hypothesis: Human judgment Bayesian networks have the same average percent
error as equation-based models.

Alternate hypothesis: Human judgment Bayesian networks do not have the same average
percent error as equation-based models.

Hypothesis #2A

Null hypothesis: Human judgment Bayesian networks require less than or equal time to
construct compared with equation-based models.

Alternate hypothesis: Human judgment Bayesian networks require greater time to
construct compared with equation-based models.

Hypothesis #1B

Null hypothesis: Formulae Bayesian networks have the same average percent error as
equation-based models.

Alternate hypothesis: Formulae Bayesian networks do not have the same average percent
error as equation-based models.

118
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Hypothesis #2B

Null hypothesis: Formulae Bayesian networks require less than or equal time to construct
compared with equation-based models.

Alternate hypothesis: Formulae Bayesian networks require greater time to construct
compared with equation-based models.

Hypothesis #1C

Null hypothesis: Computer-generated Bayesian networks have the same average percent
error as equation-based models.

Alternate hypothesis: Computer-generated Bayesian networks do not have the same
average percent error as equation-based models.

Hypothesis #2C

Null hypothesis: Computer-generated Bayesian networks require less than or equal time
to construct compared with equation-based models.

Alternate hypothesis: Computer-generated Bayesian networks require greater time to
construct compared with equation-based models.

All formula models were created using formulae from published textbooks on the
subjects being modeled, or derived from these published formulae. Human judgment was
tested using a group of nine volunteer test subjects holding a Master’s Degree or Ph.D. in
math, science, engineering or engineering management. Subjects were provided
background information and test results for similar items they were asked to predict as
described in the appendices for each model. The computer-generated models used the
same background data provided to the human judgment subjects to create an output
model. For both the human judgment and computer-generated Bayesian network model
accuracy tests, none of the data used for comparison to the test data was contained in
either the test data shown to the volunteers or the input database used by the computer
programs. Because the background data came from a variety of sources, it was
impossible to measure the time to collect the test data. It is assumed that the human

judgment and computer-generated models were using data that is already available. All
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computer-generated models were created using a 3.07 GHz Pentium 4 processor with 1.0

GB of RAM.

7.1 Comparison of Equation-Based Models with Human Judgment Bayesian Networks
The comparison of accuracy is made by comparing errors in the models of

appendices A, B, and C. The three models are used to generate seven cases for testing

the first hypothesis. A summary of model errors is presented in figure 7-1.
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Human Judgment Model Error Comparison
Hypothesis 1A is tested with the data of figure 7-1 resulting in a failure to reject the null

hypothesis at the 95% level of confidence. The error associated with the human
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judgment Bayesian network models is higher in six of the seven cases as compared to the
equation-based models. Although the average error for the Bayesian networks is higher,
the magnitude of the error is not great enough to establish a statistical difference between
the two at 95% confidence.

Three cases are of particular interest in figure 7-1. The NACA 4421 wing is the
only case in which the human judgment is better than the equation model. In this
particular case, the models predicted the coefficient of lift of a two dimensional wing
section. Humans were able to see and predict that some flow separation would occur at
higher angles of attacks resulting in a loss of lift while the equation model could not as
shown in figure C-12 of Appendix C. The other two cases of interest are the LRC 2.8KQ
220uF 100uH and the LRC 2.8KQ 220uF 300uH electrical circuits. For the values of the
components selected, the value of the inductor has no observable effect on the output
voltage as can be seen in figure B-4 of appendix B. The inductor causes a delay in the
rise of the voltage when it is first applied. However, this delay happens so quickly it can
not be observed within the maximum 0.02 second sampling rate of the test equipment for
commercially available inductors. The prediction for the two circuits should be the same
and this is correctly predicted by the equation-based model. By contrast, the human
judgment prediction is significantly different as is shown in figures B-6 and B-7 of
appendix B and is reflected in different accuracies in figure 7-1. This demonstrates
biases which are present in human judgment predictions.

The times of construction for the three models that are used to create the seven

cases are first presented in figure 7-2.
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Figure 7-2
Model Construction Time Comparison

As can be seen from figure 7-2, time of construction is greater in three of four cases for

human judgment models as compared to the equation models. The only case where the

human prediction model construction time is less is the wing model. The wing model is

shown only for comparison and is not used for hypothesis testing as it was obtained from

an outside source that could only provide an estimate of construction time.

In addition to the human judgment models shown in figure 7-2, an elevator

control model and a thermostat model described in appendices D and J were also

constructed for use in chapter 8. These models were manually constructed and

probability tables were created by manually filling in each cell in the table with a
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probability determined by the author. As such, these are also classified as human

judgment models. The construction times for all measured models used for testing the

second hypothesis are presented in figure 7-3.
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Figure 7-3
Human Judgment Model Construction Time Comparison

Hypothesis 2A is tested with the data of figure 7-3 resulting in a rejection of the null
hypothesis at the 95% level of confidence. In the Amplifier, LRC and Wing models of
figure 7-2, the use of nine volunteers to predict the outputs added significant time to the
construction process. This can be seen in tables A-1, B-1 and C-1 of appendices A-C.
The average time for each of the nine humans to make their predictions was 8.2 minutes,

resulting in over an hour in each case to collect the human judgments. In the Elevator
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Control and Thermostat models where probabilities were generated from a single person,
the time of model construction is very similar to the time required to build the equation-
based model.

The results obtained in the test models and cases do not support a conclusion that
there is an advantage to using human judgment Bayesian networks over equation-based
models. Human judgment models generally demonstrate less accuracy than their
equation-based equivalents. Construction of human judgment models requires about the
same amount of time if the probabilities are entered manually into the node probability
tables by a single person. Considerably more time is required if collecting predictions
from multiple people. The one possible exception may be for very complex modeling
problems in that the test data shows a lower time of construction as compared to the
estimate while accuracy is better in one of the two cases. Investigating very complex
models is beyond the scope, capability and budget of this investigation but should be
considered for future research.

7.2 Comparison of Equation-Based Models with Formula Bayesian Networks

The comparison of accuracy uses the error measurements in the models of

appendices A, B, E, F and K. The five models are used to generate nine cases for testing

the first hypothesis. A summary of model errors is presented in figure 7-4.
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Figure 7-4
Formula Model Error Comparison

Hypothesis 1B is tested with the data of figure 7-4 resulting in a failure to reject the null
hypothesis at the 95% level of confidence. The error associated with the formula
Bayesian network models is higher in five of the nine cases and less in the other four
cases as compared to the equation-based models. The averages for all nine cases are
nearly the same for each modeling method. This is a logical result since both sets of
models were built using the same set of equations.

The comparison of time of construction uses the models of appendices A, B, E, F

and K are presented in figure 7-5.
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Figure 7-5
Formula BN Model Construction Time Comparison

Hypothesis 2B is tested with the data of figure 7-5 resulting in a rejection of the null
hypothesis at the 95% level of confidence. As can be seen from figure 7-5, times of
construction are very similar for both simple and complex models. The average over all
five models is nearly the same number. This indicates that constructing models using
equations takes roughly the same amount of time whether using The Extend modeling
and simulation package or the Netica Bayesian network package.

The only interesting point of this comparison is the LRC Bayesian network

formula model. The first attempt to build this model used intermediate variables of the
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equations found in appendix B the same way the equation-based model of figure B-2 of
appendix B is constructed. This model failed to work because the equation is a second
order equation which may have complex roots. When using intermediate variables in a
Bayesian network, some of the variables were converted to complex numbers when the
equation to table option was used due to the calculation of all possible combinations of
the bins of each continuous variable. This resulted in some nodes having a mixture of
real and imaginary numbers in the probability distribution. The formula network was
reconfigured as shown in figure B-8 so that the entire equation for calculation of current
was entered as one very large formula into node “I”. Although this corrected the problem
with imaginary numbers, it still resulted in a poor prediction of current and voltage out
for the lowest time bin of 0.0 to 0.1 seconds in two of the three predictions. This
anomaly can be seen in figures B-13 and B-14 of appendix B.

The results of this comparison demonstrate that equation-based modeling and
Bayesian networks constructed using formulae with the chosen software packages
produce equivalent results. Construction and comparison of more models is highly
unlikely to change the results of the hypothesis testing. The advantage of using a
Bayesian network is that its output is a probability distribution. An equation-based model
would have to be run multiple times to get the same distribution. A disadvantage of
using a Bayesian network constructed with the Netica software is that it may require the
formula to be entered as one very long equation to prevent the generation of imaginary
numbers. Although this results in a smaller network, it is more difficult to program and

far more difficult to troubleshoot than breaking the equations down into a series of



128

simpler equations using intermediate variables. This limitation is related to the particular
software selected and not to Bayesian networks in general. Evolution of Bayesian
network software to hierarchical modeling capability may improve the implementation of
equations within the models.
7.3 Comparison of Equation-Based Models with Computer-Generated Bayesian
Networks

Model errors from appendices A, B, and C are used to compare the accuracy of
computer-generated models with the baseline. The three models are used to generate
seven cases for testing the first hypothesis. A summary of model errors is presented in

figure 7-6.
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Figure 7-6

Computer-Generated BN Model Error Comparison
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Hypothesis 1C is tested with the data of figure 7-6 resulting in a rejection of the null
hypothesis at the 95% level of confidence. The error associated with computer
constructed Bayesian network models is lower in all seven cases as compared with the
equation-based models. The magnitude of the difference in error is great enough to
establish a statistical difference between these two methods at 95% confidence.

Three cases are of particular interest in figure 7-6: Amplifier Step, LRC 1KQ
220uF 100puH and NACA 4421 wing. In all three cases the computer-generated Bayesian
network had substantially less error than the equation-based models. This can be traced
to non-linearity in the test data of these three cases which are not captured by the
equations. In the amplifier model where the step function is used, there is noise at the
input and output of the amplifier at the lower end of the step when zero voltage is the
input as can be seen in figures A-6, A-7 and A-19 of appendix A. In the LRC 1KQ
220uF 100puH model the voltage does not decay to a steady state value near zero as
predicted by the equation which can be seen in figures B-4 and B-12 of appendix B. This
was traced to charge leakage from the capacitor. The voltage decays instead to a value of
approximately 0.2 volts where the capacitor charge leakage and rate of charge reach
equilibrium. The NACA 4421 has flow separation which occurs at higher angles of
attacks resulting in a loss of lift. This occurs in thicker wings as can be seen in figures C-
5 and C-12 of appendix C. The computer-generated Bayesian networks are able to learn
the existence of these phenomena and accurately predict their presence in other similar

configurations.
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Improved accuracy was not expected prior to conducting the research. Early tests
did show that Bayesian networks could learn relationships between variables including
any non-linearities that are not captured by equations, and that this could result in
improved accuracy. However, early tests also showed a loss of accuracy when
discretizing continuous data sets into bins. It was theorized that improvement in one area
would cancel out the additional error added in the other area during construction of a
Bayesian network by a computer. Development of the derivative method of
discretization, incorporation of the neural network to provide the ability to predict cases
not represented in the data set, and replacement of Dirichlet probabilities with normal
distributions of the data all improved the accuracy of the discretized models. These
developments also allowed the data to be discretized into a larger number of bins
increasing resolution of the final model. The total combination of factors resulted in very
small errors introduced during the final discretization process. These small errors were
vastly overwhelmed by the gains in accuracy achieved through learning of the variable
relationships directly from the data. The accuracy improvement by itself presents an
exceptionally strong case for considering the use of computer-constructed Bayesian
network models.

The comparison of time of construction uses the models of appendices A, B, D, E,

F and K. The construction times of these models are presented in figure 7-7.

Error! Not a valid link.

Figure 7-7
Computer-Generated Model Construction Time Comparison
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Hypothesis 2C is tested with the data of figure 7-7 resulting in a failure to reject the null
hypothesis at the 95% level of confidence. The computer-generated models take less
time to construct as compared to equation-based models in five out of six cases. The
difference is so great in these five cases that it supports a conclusion that construction
time for computer-generated Bayesian networks is less than equation-based models at
95% confidence. This result was expected in that computers can perform certain tasks
such as complex mathematical calculations and filling in large probability tables much
more quickly than humans. This result further strengthens the case for considering the
use of computer-generated Bayesian network models as the results support the research
goal of reducing M&S costs.

All of the cases provide noteworthy observations. The amplifier model is the only
comparison where the equation-based model took less time to construct as compared to
the Bayesian network. This is caused by unique factors associated with this particular
model. The equation model was extremely easy to construct as the modeling software
package came with a pre-built amplifier element. The more complex circuit of figure A-
1 is contained in the single block labeled “Amp” of figure A-2 in appendix A. The
Bayesian network took longer to construct as the input and output data consists of two
very different waveforms. This required the construction of two separate Bayesian
network models and two neural networks; one to represent each waveform. Two models
are required because of the limitations of the derivative method described in chapter 4.

The LRC and Radar models have the highest construction times for the Bayesian

network models. As presented in table B-1 of appendix B, 41 of the 49 minutes needed
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to construct the LRC model were consumed by computer run time of the BN builder
program. Although this network contains only five nodes, the input data set contains 808
rows while the program generated 303 additional rows of data to predict the three circuit
configurations tested. By contrast, the Commuter model contains 30 nodes (29
continuous, 1 discrete). The input data set contains 25 rows of data and no additional
data is generated. Computer run time is 3 minutes to construct this model with the BN
Builder software. This demonstrates that model construction time is influenced much
more by the number of rows of data including any neural network predictions than by the
number of columns in the data set. This also demonstrates the efficiency of the derivative
method where 29 continuous nodes are simultaneously discretized within a total network
build time of about three minutes.

The Elevator Control model has the greatest difference between the two
construction methods. This case is unique in that both models do exactly the same
control function with the equation-based model using a rule technique and the Bayesian
network using probabilities. The elevator of appendix D has six call buttons on the four
floors, each with two possible conditions. The elevator can be moving up or down, has
four destination selection buttons each with two conditions and can be at one of four
floors when a decision must be made. A rule based approach must cover (2° * 2 * 2% *
4" or 8192 possible combinations. All combinations can be reduced to 512 rules to
cover elevator movement. This is possible because multiple conditions can be covered
by a single rule. For example, if the elevator is at a floor below two and the direction is

up, one rule covers both the second floor destination select and the second floor up call
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button. Programming the rules in an equation-based model requires 111 function blocks
as shown in figures D-1 through D-3 of appendix D. By contrast, the computer-generated
model requires only 13 nodes as shown in figure D-5 of appendix D. Although the tables
of the position and destination node are large, the time required to learn the probability
tables is small for computer learning. The conclusion is that there is a great advantage to
using Bayesian networks or influence diagrams for decision or control models as
compared to a rule-based approach.

The exact type of network to be used is determined by the specific application. If
the problem is rule-based where the desired result is for the network to provide a specific
output for a given set of inputs, all that is required is a probabilistic inference. A
Bayesian network will suffice in this application. An example would be a target decision
support network where the requirement is to determine whether a contact is friendly or
hostile as demonstrated in appendix L. Based on sensor inputs, this only requires
probabilistic inference. If the problem is more complex and the application requires
optimization based on conflicting goals, an influence diagram is used. Influence
diagrams contain utility nodes allowing the assignment of utility values to outcomes of
the decision. Ifthe target network must now make a recommendation to either shoot
down the target or to hold fire, that decision must be weighed with the utilities of the four
possible outcomes: target friendly and held fire, target friendly and shot down, target
hostile and held fire, target hostile and shot down. The recommended decision will now
be the maximum value of the sum of the utilities assigned the outcomes of each decision

times the probability the target is hostile or friendly as demonstrated in appendix L.
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The LRC, FLIR and Commuter models are of interest in that the structural
relationship found using the BN PowerConstructor program did not match the
relationship of the equations derived for the same models. In the case of the LRC model,
BN PowerConstructor found no relation between the value of the inductor (L) and any of
the other nodes. This is because for the values of R, C, and L drawn from available parts
on hand, the roots of the equation were real and the delay in voltage rise caused by the
inductor was too short in duration to be measured with the test equipment. This
demonstrates an important advantage to the use of Bayesian networks. If the learning
data set bounds the upper and lower limits of the input variables, a Bayesian network may
find a simpler solution if some variables do not influence the outcome in this particular
region.

In the case of the FLIR and Commuter models, the BN PowerConstructor
program found variables relationships that were not contained in the equations. For the
particular FLIR system tested, a relationship was found between the display polarity and
the maximum detection range. This occurred despite the fact there is no theoretical basis
in infrared theory for such an effect to occur. Because of this the resulting computer
model is far more accurate than either the equation-based model or formula Bayesian
network as can be seen in figure F-15 of appendix F. Similarly, the Commuter model
found relationships between both day of the week and time of departure and the total
commute time as can be seen in figure K-14 of appendix K. This demonstrates another

important advantage to using computer-generated Bayesian networks in that structural
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learning from data sets may find relationships not contained in the equations that can
significantly influence the outcome of the model or simulation.
7.4 Discussion and Conclusions

The comparison of modeling methods provides insights into current methods of
modeling and simulation. Most models and simulations constructed today for
engineering trade studies use an equation-based approach. Therefore, this type of model
was used as a baseline for this research. Comparison of this method to manually
constructed human judgment problems found no advantages in that these Bayesian
networks on average took longer to construct and were less accurate as compared to the
baseline. Comparison of formula Bayesian networks to the baseline found no compelling
reason to change modeling methods. These two methods were essentially equivalent in
accuracy and time of construction while the formula Bayesian networks experienced
some problems with imaginary numbers because of the software package used for the
comparison. These first two methods of Bayesian network construction are currently
what are available in commercial software packages. These test results may explain why
there has been no move towards wider use of Bayesian networks in engineering
applications.

The results of this research demonstrate that there is a two compelling reasons to
consider the use of computer constructed Bayesian networks in engineering model
construction. Research results demonstrate that this method is statistically both faster in
terms of model construction time and is more accurate than using present equation-based

methods. Figure 7-8 presents a comparison of construction time and model complexity.
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Model Time-Complexity Comparison

Figure 7-8 shows a log-log plot of the number of function points versus the time of
construction. A function point is defined as one functional element in the equation-based
Extend modeling package or one node in the Netica Bayesian network software package.
One observation is that for equivalent models, the Bayesian network models require
fewer function points than the equation models. This is possible because equation-based

models often require multiple constants and calculation of intermediate variables to reach
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the final answer. Computer constructed Bayesian networks do not need constants and
can find relationships directly between input and output variables.

A second observation is the relationship between time and complexity. Excluding
the elevator control which was a rule-based controller as opposed to an engineering
model, a linear relation can be seen between complexity and time of construction for both
the equation models and the formula Bayesian network in figure 7-8. This indicates that
when using equations in either modeling package, that as the complexity of the modeling
problem increases the time of construction increases exponentially. By comparison, there
is no observable relationship between complexity and time of construction for the human
judgment or computer constructed Bayesian networks. As previously described, the time
of construction of computer-generated models is most heavily influenced by the size of
the database and the amount of data generated by the neural network. As models become
more complex, more data is required to learn the relationships requiring more time to
construct the model. However, the rate of increase of time with complexity for
computer-generated models is less than that for equation-based models. This leads to a
conclusion that the more complex the modeling problem, the greater the construction
time savings the computer-generated Bayesian network will have with respect to an
equation model.

The cost of modeling and simulation is driven mostly by the human labor
involved in the process. Although computer equipment and software require upfront
investments, the cost of computer run time once purchased is negligible. Additionally, all

demonstrations in this research have used commercial off-the-shelf equipment, software
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products and software development packages. The average times to perform specific

tasks while constructing the models of appendices A, B and F are presented in figure 7-9.

Computer BN

Figure 7-9
Model Construction Time Task Percentages

As can be seen from the figure, not only has the average time of construction been
reduced from 69 to 28 minutes, but the task loading requiring human work has been
reduced from 100% in the equation-based model to 32% for the computer-generated
Bayesian network. Reviewing the breakdown of model task times contained in the
appendices, as model complexity increases, total construction time increases. However,
the human tasks associated with model construction remain nearly constant. Learning the
network structure and constructing the neural network both require human input, but are
computer-aided tasks. The increase in construction time is almost completely attributable
to increased computer run time of the BN Builder program. This leads to a conclusion
that models created using computer generated Bayesian networks would be much less
expensive to build than equation-based models. Not only is time of construction

significantly less, but the human labor involved is also reduced. Because there is no
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longer a strong relationship between complexity and human labor required, costs to
construct computer-generated Bayesian networks are not sensitive to problem
complexity.

Tests results show that a computer-generated Bayesian network is not superior to
an equation-based model in every case. Each modeling method has certain advantages
depending on specific circumstances of what is being modeled. Based on test results, the
following circumstances favor the use of an equation-based approach:

e Validated equation-based models already exist
e Modeling function blocks already exist
e There is a scarcity of available data on what is being modeled
e The element being modeled does not require many function points
e Inputs and/or outputs are very different functions such as linear and non-linear
data
The following circumstances favor a computer-generated Bayesian network approach
e Database of observed or test data already exists
e Problem is not well understood and/or equations do not exist
e Problem is complex
¢ Input and output functions are similar
e There may be unknown non-linearities
e Hidden variable relationships may exist

e Problem is a control application or decision problem
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The conditions most favorable to computer-generated models are those with the greatest
potential to reduce the time of construction and expense of modeling and simulation.
Building an equation-based model is straight forward if equations exist and are readily
available. It is the complex problems where equations do not exist or non-linear elements
are present that make it difficult and time consuming to define the problem using an
equation-based approach. The results of this research indicate that it is now possible to
rapidly construct models of very complex systems. Because cost is primarily driven by
human labor required to construct models, this reduction in time and transfer of labor
from human to computer should translate into greatly reduced cost. The goals of the
original research have been exceeded by not only demonstrating that Bayesian network
engineering models can be created in less time at reduced cost, but that these models are

more accurate than their equation-based equivalents.



8. Integrating Equation-Based Models and Bayesian Networks

Research results comparing equation-based models with Bayesian networks
conclude that there is no single method that works best in all models or simulations.
Each method has advantages and disadvantages depending on the specific circumstances
of the problem. Equation-based models and Bayesian networks are not mutually
exclusive methods of modeling and simulation. Based on the software development
described in chapter 6.2, the two methods can now be used simultaneously within the
same environment. When modeling complex systems, the problem is usually broken
down into smaller, simpler subsystems that are constructed, tested and then integrated
into the final complex model or simulation. This approach lends itself to creation of
integrated models where each component to be modeled is individually evaluated to
determine which modeling method would be best under the particular circumstances.
Appendices D, H, I, J, L and M demonstrate the utility of this approach with integrated
models that contain both equation-based elements and Bayesian networks working
together to create a single simulation.

Another problem in modeling and simulation has been how to mix models that
have different levels of fidelity and resolution. Chapter 3 presents an approach to multi-
resolution in which inputs to the model are represented as random variables, probability

distributions are defined over their range of potential values, and Monte Carlo simulation

141
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is used to create multiple samples and calculate a final output distribution. Because
Bayesian networks are distributions, this method works well in an integrated modeling
environment. Appendices L and M demonstrate this approach by integrating Bayesian
network subsystems that are of different fidelity and resolution from other equation-based
sub-models.

8.1 Bayesian Networks as Subsystems of Equation-Based Models

Appendix L demonstrates the integration of the equation-based F-16 radar model
of appendix E with the Bayesian network B-26 radar cross section model of appendix G.
A second radar cross section of a 1/15 scale model of a Boeing 737 commercial aircraft is
also constructed from unclassified test data. These models were constructed and validated
from two entirely different sets of measured data using two different methods. As such,
these models have completely different fidelities and resolutions.

To simulate a radar tracking engagement, an equation-based motion model is
added to the other models. The motion model allows the aircraft to fly across the
viewing angle of the radar. As the aircraft moves, both the range and aspect angle of the
target to the radar changes between each radar sweep. Example simulation tracks of each

aircraft are shown in figure 8-1.
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Radar Tracking Simulations
The radar begins to detect the B-26 just inside the maximum radar display range of 80
NM. The real world phenomenon of target scintillation, where the target returns fade in
and out near the maximum detection range, is observed on the B-26 track. Once the B-26
moves closer to the radar, the return is so strong that a continuous track is maintained
even as the aspect changes. The much smaller model of the Boeing 737 aircraft is harder
to detect. The target is visible on the display for only a short time. In this case, the target
is detected not as a function of range, but of changing aspect angle. The radar detects the
aircraft as the target aspect shifts to the left side of the aircraft where a higher radar cross

section exists as shown in figures L-5 and L-7 of appendix L. The target detection is lost
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as the aspect angle moves to the rear quarter which has a much lower cross section even
though the target continues to get closer to the radar. Although it is impossible to obtain
test data to validate this integrated simulation, the results match the real world experience
of the author in operating air-to-air pulse radars.

Appendix M provides an example of an engineering trade application where a
system with a validated equation-based model exists. This example uses a small robotic
vehicle that can be easily modified so that model predictions can be compared to test
data. The problem looks at replacement of the two electric motors with a different pair of
motors. The problem is to predict the speed of the vehicle system with the new motors.
Instead of building a new equation-based model of the motor, a Bayesian network model
is created from test data of RPM of the motor at various torque loads and power settings.
The Bayesian network model is then substituted for the existing motor model in the
robotic vehicle model. The test vehicle was also modified with the new motors to
compare actual vehicle performance to the integrated model prediction. Due to a
difference in physical size, it was also necessary to change the drive system from gears to
a belt and pulley system. These parameters were entered into the model so that the model
parameters matched the configuration of the test vehicle. The test technique for testing
the motors and the vehicle system were different resulting in the Bayesian network motor
model having a different fidelity and resolution than the equation-based system model.

The equation-based model and the Bayesian network model were both used to
predict the performance of the car under four different sets of conditions. The mean of

the prediction distribution is compared to the mean of the test data for both the baseline
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equation-based model and the modified integrated model with the error shown in figure
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Robotic Vehicle Model Prediction Error
As can be seen in figure 8-2, the average error over the four conditions tested is
approximately the same. As shown in appendix M, the distributions of the test samples
all fell within the limits of the predictive distributions created by the models. The
average error of approximately 5% is within the accuracy of the test methods used to

collect the performance data.
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8.2 Bayesian Networks/Influence Diagrams Controlling Equation-Based Models

Appendix D provides an example where a Bayesian network is used to
control an elevator. Although the research of chapter 6 showed that there was a strong
advantage to constructing control elements using Bayesian networks, it would be very
difficult to accurately model the physical components of the elevator with a Bayesian
network. The elevator simulation includes a random people generator that assigns
passengers to different floors and simulated desires to move to a different floor. The
elevator itself is constructed with measured delay times for movement, door open and
close and maximum capacity based on measurements from the elevator in the Science
and Technology Building II at George Mason University. Additionally, the Extend M&S
package has an animation capability allowing visualization of elevator operation. All
these factors support use of an equation-based approach to construct a model of the
elevator. Research showed that using a rule-based approach with an equation model for
the control logic is difficult and time consuming to construct. An integrated simulation in
which control is provided by the Bayesian network and the other components of the
elevator use an equation-based approach provided a superior solution with respect to
speed of construction and simplicity.

Appendix J demonstrates a similar simulation with a home heating system. The
baseline house with all its heat loss mechanisms such as the walls, windows, doors and
roof are modeled with equation-based elements. The heating system is also an equation-
based model. The model is modified by replacing the single setting thermostat with a

programmable thermostat that allows the temperature to change automatically four times
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per day. The programmable thermostat, which controls the heating system, is modeled
using both an equation-based model and a Bayesian network. The outside temperature is
varied over a 24 hour period using temperature data for the Washington DC area for the
month of January. Each model is run using a Monte Carlo simulation with the results

shown in figure 8-3.
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Figure 8-3
Home Heating System Simulation

The programmable thermostats result in an average decrease in fuel consumption of
approximately one gallon per day as compared to the baseline fixed temperature

thermostat. Because the thermostat was a simple model requiring very few elements to
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construct, both models had similar outputs and took about the same amount of time to
construct.

Appendix H demonstrates the use of modeling and simulation in business process
reengineering. This example looks at screening of loan applications for approval or
disapproval. The baseline process uses two humans to screen loan applications to
determine whether to approve them or route them to a second, more thorough review for
final determination. The baseline model is modified so that this initial screening process
is replaced by a computer screening that conducts the initial review. The modified model
uses a rule-based approach to route the loan applications based on a simple set of
screening rules. The simplified rules identify any application that fails to meet a
specified threshold value in several areas and routes any flagged applications for the
second review by a human. A Bayesian network model is also created that uses a file of
previous loan cases to calculate the node probabilities. The Bayesian network is
implemented so that it routes applications whose attributes indicated less than a 75%
probability of repayment for the second, human review. The results of running the
baseline model as compared to the two modified versions of the model over a 40 hour

work period are presented in the simulations of figure 8-4.
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Loan Application Screening Simulation

The rule-based screening process resulted in a process that was 18% less productive than
the baseline human screening process. By contrast, the Bayesian network model resulted
in a 103% improvement in productivity. This simulation demonstrates the importance of
the use of modeling and simulation when considering process changes. Although one
would expect the introduction of automation to improve the productivity of a process, this
example shows that this is not always the case. In this case, complex interactions caused
unintended consequences as described in appendix H.

Appendix I is also a business process simulation. The baseline simulation is a

virtual representation of the electrical repair shop at an automotive center. The baseline
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simulation routes cars to one of three mechanics using a first in, first out routing process.
The simulation is modified by recording reported symptoms that owners report when
dropping off their cars for repair. Not all reports are accurate. The modified model uses
a rule-based approach to route the cars based on a simple set of diagnostic rules that
evaluate the reported symptoms. Cars are then routed to the mechanic best suited to
make the repair of the fault based on the diagnosis. The model was modified again by
replacing the rule-based procedures with a Bayesian network to diagnose the most likely
problem. Probability distributions for the network were learned from previous car repair
cases. Again, the cars are routed to the mechanics best suited to make the repair. The

average weekly gross income for all three simulations is presented in figure 8-5.

35000

30000

25000

20000

DOFirst In/First Out
B Rule_Routing
OBayes Net Routing

15000 -

10000 -

5000

Routing Process

Figure 8-5
Car Electrical Repair Simulation Gross Weekly Revenue



151

Both of the diagnostic routing procedures demonstrated improved performance over the
baseline simulation. The Bayesian network routing demonstrated a higher increase in
weekly revenue with a 24% improvement as compared to the rule-based routing at 19%.

Appendix L uses an influence diagram as part of an air defense network to decide
whether to fire a weapon in response to a radar contact. A Bayesian network created
using human judgment for node probabilities was modified into an influence diagram by
the addition of a utility node and a decision node. The utilities were set so that optimal
decisions were made by firing at targets determined to be hostile while not firing at
neutral or friendly targets. The network was tested by integrating it with the radar/radar
cross section model described in section 8.2 and as shown in figure L-11 of appendix L.
The equation-based model determined some of the node states based on the motion and
target aspect of aircraft. Other states were generated by random number generators set to
likely values of the type of aircraft. Random errors and missing values were also added
to the inputs. A second version of the baseline influence diagram was created by adding
arcs from the node “Identity” to nodes “EW” and “Kinematics”. This was done to allow
the network to include the airspeed of the target and whether the radar was on in
determining if the contact was hostile. The probabilities and utilities were then learned
from the simulation.

A comparison of the two simulations is presented in figure 8-6.
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Figure 8-6
Air Defense Test Results

As can be seen from the test results of figure 8-6, the simulation-trained network
provided much better decisions and target identifications than the human-judgment
baseline. The baseline network correctly identified and recommended firing at all
incoming missiles, but also recommended firing at 34% of friendly and 10% of neutral
aircraft. It also recommended shooting at 75% of MIG-29 aircraft based solely on
aircraft type. The test results demonstrated that the network had difficulty in determining
the type of aircraft and a flaw in logic by using aircraft type as the primary determinate of
whether it was hostile. Additional arcs were added to change the logic to observe aircraft

actions in determining hostile intent. A decision policy was implemented that non-
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friendly aircraft flying towards the radar position at speeds greater than 500 knots with
their targeting radar on were considered hostile. By learning the probabilities and utilities
from the simulation, the simulation-trained network provided much better decisions
during tests recommending firing only at missiles and MIG-29s demonstrating hostile
intent. Provided that the simulation is an accurate representation of the real world, this
example demonstrates a method for accurately training and testing of very complex
influence diagrams.
8.3 Discussion

The six examples presented above demonstrate that Bayesian networks and
equation-based models can be used together to form an integrated simulation
methodology. Because there is no single method that is optimal in all circumstances, the
integration of both types of models allows the model builder to choose different
approaches for different subsystems, selecting the best approach for each subsystem. The
previously demonstrated capability to rapidly and accurately build Bayesian network
models from data should allow the construction of new, complex models and simulations
that are not feasible using a single method. The ability to build rapid and inexpensive
Bayesian network models also improves the capabilities of the modeling and simulation
community to quickly conduct trade studies to determine if a proposed change to an
existing system results in the desired outcome.

The radar tracking and robotic vehicle examples demonstrate that this technique
can accommodate the requirement for constructing mixed-fidelity, mixed resolution

models. Measurement error in the data used to construct the Bayesian network will be
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represented by a higher spread of values in a constructed Bayesian network. The
resolution of a Bayesian network is primarily a function of the number of bins used for
continuous variables. A Bayesian network constructed from a data set contains both a
central tendency and spread that incorporates uncertainties from both the fidelity of the
data and the resolution of the network. Using this data with a Monte Carlo method in the
equation models allows the calculation of probability distribution as the output. This
output provides not only a most likely answer, but the range of possible values that could
possibly occur along with a probability for each possible range of answers. This
approach provides a more complete solution to an engineering trade study than
conventional sensitivity analysis.

The research also demonstrated the use of complex simulations to train influence
diagrams. This approach allowed the network to test the outcomes of the decision
options for different combinations of inputs. The network learned the probabilities and
utilities from the results of each simulation. After many simulations, the network learned
which decisions resulted in the most favorable outcomes. Provided the simulation is an
accurate representation of the real world, the trained and tested influence diagram can
then be used as either a decision aid or autonomous decision system. This approach may
be particularly useful in future unmanned vehicle control systems where a high degree of
autonomy is required. The examples provided above demonstrate the feasibility and
utility of integrating Bayesian networks and equation-based models. The exploitation of

this new capability should lead to multiple follow-on research projects. This approach
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may prove fruitful in a number of scientific disciplines that make use of models and

simulations.



9. Conclusions and Future Research

Background research found that modeling and simulation is an important tool in
the field of Systems Engineering. This tool is one of the few that has demonstrated the
simultaneous achievement of bringing a better product to market in less time at a lower
cost. These benefits apply to both large and small development efforts. Unfortunately,
the current high cost of modeling and simulation puts this tool out of reach of many small
development efforts. This is the result of current practice which uses an equation-based
approach to modeling and simulation. An equation-based model is only as good as the
equations that make it up. It is extremely difficult in complex system modeling to
capture all the possible variables that may influence a problem and to define the relations
between the variables using equations. As model builders attempt to create high-fidelity
models by searching for and adding additional variables and equations, the costs continue
to spiral upward.

The approach taken in this research was to explore the use of Bayesian network
models as alternatives to equation-based models. Bayesian networks have an advantage
as they define relations between variables in terms of conditional probabilities. Where
equations-based models must use Monte Carlo sampling to generate a probability
distribution over multiple computer runs, the Bayesian network can calculate these

distributions in a single cycle. The use of probability distributions not only provides
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more complete answer to a problem by specifying both a central tendency and range for
the answer, it also allows for the integration of models of mixed fidelity and resolution.
The major drawback of Bayesian networks is the lack of good discretization techniques
for continuous variables. A second drawback is that if the probabilities were learned
from an input data set, the completed network can only respond to discrete queries for
data that were provided in the input learning set.

9.1 Improvements to Discretization

The first contribution of this research is to propose a new, multivariate approach
for discretization of continuous variables. This method was tested against four iterative
search and score methods. Results showed that the derivative method performed as well
as the other four methods and was faster in all cases. Based on this limited sample of
discretization methods and data sets, a conclusion can not be made that this method is
superior to any other discretization method. Further research should be conducted to
better quantify the results. However, the method was much faster than any method
evaluated and did not suffer from memory limitation problems experienced by the
software implementing the iterative methods.

There are a number of other potential follow-on research projects that should also
be considered. Metrics should be developed that allow the algorithm to determine an
optimal number of cut points. Iterative methods should be applied to the cut points
determined by the derivative method to see if a better discretization can be produced in
less time than starting with random cut points. The derivative method should also be

applied to iterative discretization and structural learning to see if better structures can be
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obtained by alternately updating the discretization and structure between iterations until
the two converge.

The research also addressed limitations in current Bayesian network software
packages where Dirichlet learning is used to learn the probability tables from data sets.
This limitation can cause problems in continuous nodes with a large number of bins in
that there may be residual probabilities in the cells which had no data values. These
probabilities, especially when the true answer lies near either end of the range of bins,
can skew the central tendency and spread of the answer. The research proposed to
address this issue by substituting normal probabilities of the data in place of the Dirichlet
probabilities in the continuous leaf nodes. This approach provides an effective method of
building high resolution Bayesian network models without loss of accuracy. It also
provides a method to incorporate additional uncertainty when predictions were added to
the input data set.

The implementation for this research was limited to continuous leaf nodes and
normal probabilities. This was all that was required as the examples tested were
engineering problems where the outputs represented in the leaf nodes were the variables
of interest. The data sets were all expected to be normal distributions. This is obviously
not the case in all problems. Future research should look at potential improvements to
network performance if all continuous nodes are converted to probability distributions. It
should also look at determining what type of distribution best fits the data and use a

distribution of that type in the continuous node probability tables.
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9.2 Predicting Values for Incomplete Data Sets

The second contribution of the research is the integration of neural networks into
a Bayesian network construction algorithm. This integration provides a number of
advantages for Bayesian network construction. The neural network can produce
additional data for the input training set by predicting missing values or providing more
data in areas that contain sparse observations. The implementation allows the calculation
and inclusion of uncertainties associated with the predictions to be included in the final
Bayesian network probability tables. The result is an output Bayesian network that can
reason with inputs not provided in the input data set as long as the inputs are bounded by
the input data. The use of a neural network also acts to smooth scattered data sets
insuring good performance of the derivative method discretization of continuous
variables.

The neural networks are currently constructed and trained as a separate process
with the trained network used as an input to the Bayesian network build process. Further
research should be conducted into algorithms for construction of neural networks from
data sets. As software incorporates this capability, future research should look at
computer constructed and trained neural network models. Automation of the neural
network construction and training process would further reduce the amount of human
task time required to construct computer-generated Bayesian networks. Additionally, the
current software allows only a single neural network as input. If construction of neural
networks can be accomplished by computer, the software should allow the generation and

use of multiple neural networks to predict missing values in any number of columns.
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9.3 Alternatives to Equation-Based Models

The primary focus of the research was to compare three methods of Bayesian
network construction against equation-based models used as the baseline. The first
comparison looked at manually constructed Bayesian network models using human
judgment for the probabilities. The results of this comparison showed that Bayesian
network models created using this method on average demonstrated lower accuracy and
higher time of construction than the baseline models. The research used 9 participants
which added considerable time to the process to collect and analyze the predictions. If
using a single expert, the time to construct this type of model was about the same as the
baseline. The results of the individual predictions did not correlate well with the
confidence factor assigned by the participants. Even though some of the participants’
predictions were comparable in accuracy to the baseline, there was no method to
determine which one was the best prediction. Additionally, the participants with the best
prediction for one problem did not have the best among all problems or even within
different configurations of the same problem.

The second comparison looked at Bayesian network models manually created
using formulae with the baseline. The results for both time and accuracy were very
similar. Because the same formulae were used, this comparison showed that there is no
advantage to using a Bayesian network software package to implement an equation as
opposed to an object modeling and simulation software package based on the two
software packages chosen. The Bayesian network model showed an advantage in

calculating a more complete probability distribution as compared to Monte Carlo
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sampling with an equation-based model when there were a large number of variables in
the model. The Netica Bayesian network software package did show some limitations
with probability distributions of complex numbers.

The final comparison looked at computer-generated Bayesian network models
constructed with software and algorithms specifically developed for this research. Time
of model construction was compared resulting in a conclusion that computer-generated
models can be constructed more quickly than the baseline with 95% confidence. This
comparison assumes that the input data set is available for the learning of the structure
and probabilities of the model. A comparison of the two methods was also conducted to
compare model accuracy. The computer-generated Bayesian networks were constructed
from an input data set that contained no observations for the combination of input
parameters used to evaluate the accuracy. The comparison resulted in a conclusion that
the computer-generated Bayesian network models were more accurate than the baseline
with 95% accuracy.

This result was unexpected, as it was anticipated that the Bayesian network
models would loose some accuracy during discretization of continuous data. Studying
the models, it appears that the combination of research work associated with derivative
method discretization, neural network integration and substitution of normal probabilities
into the node probability tables combined to allow creation of high resolution Bayesian
networks. These networks had very little loss in accuracy associated with disretization of
continuous data. The Bayesian networks were able to learn the presence of non-

linearities and unmodeled variables and/or relations from the data set. The networks
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were then able to apply these factors to different combinations of input values resulting in
improved accuracy as compared to the baseline.

The comparison also looked at the relationship between time of construction and
model complexity. The equation-based models showed an exponential increase in
construction time with model complexity. The computer-generated models did not show
a strong correlation of time with complexity. Computer-generated model construction
times were most strongly correlated with the number of observations in the data set.
Although more complex modeling problems will likely have larger data sets, this increase
in construction time was almost solely attributable to longer computer run times. There
was little increase in human tasks associated with larger data sets or more complex
modeling problems. All problems evaluated were run on a commercial, off-the-shelf
desktop computer, requiring no special equipment to construct the networks. It is
therefore concluded that computer-constructed Bayesian network models will reduce the
cost of constructing models and simulations by simultaneously decreasing the time of
construction and the human labor required for construction. Further research is needed to
quantify the savings. Demonstration of a faster, less labor intensive method of model
construction that is relatively insensitive to complexity while simultaneously improving
model accuracy is the third contribution of this research.

9.4 Challenges to the Conclusions

One may challenge the conclusions based on the assumptions applied to the

research problem. The baseline equation models were constructed from formulae

published in subject matter textbooks on the subject being modeled. The equation-based
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models were not able to take advantage of the test data that were used to create the
computer-generated Bayesian networks under these conditions. There is no argument
that if the data were used, further tests were conducted and additional variables and
equations were implemented in the equation-based models, their accuracy would improve
and in most cases could probably be equal to that of the computer generated Bayesian
networks. Research indicates that this is current practice. This approach is trading
additional time to improve accuracy. However, studies have also shown that this is
precisely what drives up the cost of modeling and simulation development. Such an
approach only strengthens the argument that computer-generated Bayesian networks
should be considered as an alternative to equation-based models. The counter to this
challenge is to ask why one would spend so much time and money achieving equivalent
accuracy when computer-generated Bayesian networks allow the same accuracy to be
achieved so much faster and presumably at greatly reduced cost.

A second challenge may be to the assumption that test data is available to create
the computer-generated Bayesian network. Best practices for modeling and simulation,
no matter what method is used for construction, requires that a set of test data be obtained
and used to validate the model or simulation prior to use. This validation data must cover
the limits within which the model is used for predictions. This is identical to the
assumption used to construct the computer-generated Bayesian networks. In this
research, the time of data collection was unavailable in most cases as the test data were
obtained from outside sources. However, since it is required for any method used, it

would be an equal addition to the times of any method. Although the percentages and
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confidence may change for how fast one method is as compared to another, the end result
that computer generated models can be generated more quickly would not be different.
The results of the model comparison also found that neither method was optimal in all
situations. Lack of good data with which to construct a Bayesian network model is one
consideration that may result in an equation-based model being the best choice for a
particular application. A computer-generated Bayesian network model is not the best
choice in every case.
9.5 Integrated Bayesian Network/Equation-Based Modeling

Because a Bayesian network model is not the best solution in every case, the
research makes a fourth contribution by demonstrating that Bayesian networks can be
integrated with equation-based models and simulations. This approach provides
improved flexibility for model builders. When constructing models of complex systems,
these systems are usually broken down into subsystems and components which are
modeled and then integrated together. By demonstrating that Bayesian networks can be
integrated with equation-based modeling and simulation, model builders can now pick
and choose the best method to use for construction of lower level subsystems and
elements. This will not only provide for more flexibility, but may allow for simulation of
systems that can not be done using current rule-based approaches.

The research also demonstrated that equation-based simulations can be used to
train influence diagrams. Through this process, the inputs and decisions are randomly
generated and utilities based on the outputs of the simulation are calculated. The

influence diagram node probabilities are updated and the utility values are set for the
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given decision at the end of each simulation. After multiple simulations, the influence
diagram learns which decisions result in the best outcomes for a given set of input states.
Provided the environment of the equation-based simulation is an accurate representation
of the real world, this provides an improved method for the training of complex influence
diagrams.
9.6 Summary

This research has developed the necessary methods to construct mixed discrete
and continuous data Bayesian networks from data sets. Integration of neural networks
allows prediction of additional data values expanding and smoothing the input data set.
The result is the ability to construct a Bayesian network that can make probabilistic
inferences to input conditions not in the input data set. In demonstrations on multiple
modeling problems varying from simple elements to complex systems, these Bayesian
network models outperformed their equation-based equivalents in both accuracy and time
of construction. Because neither method was optimal in every case, the research
demonstrated that Bayesian network models and influence diagrams could be integrated
with equation-based models. The end result is an expansion of capabilities that should
provide increased flexibility for the model builder and reduced cost to the model
consumer. The results of this research are expected to result in the wider use of modeling
and simulation in product development. It is also expected to benefit many areas of

science and engineering where models and simulations are essential tools of the trade.
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APPENDIX A



A. Amplifier Models

This set of models is a virtual representation of an electrical amplifier with gain
set to a value of two. An electrical amplifier takes electrical signals as inputs, and acts as
a multiplier where the output is the input signal times the gain of the amplifier. The

electrical wiring schematic of an amplifier circuit is provided in figure A-1.

+9V
. 3N 7
Vin o | 6
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-9V
R2=1000Q
R1=1000Q
Figure A-1

Amplifier Electrical Circuit Schematic

The gain of the amplifier is determined by the equation:

Gain = (1+R2) / R1.
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The minimum and maximum output values of the amplifier are limited by the input
voltages that power the amplifier; +9V in the example of figure A-1.

Test data were obtained by constructing the circuit of figure A-1 and using two
types of input waveforms: a step waveform and a cyclic waveform. The step waveform
was created by switching a voltage source either on and off or back and forth between
values at periodic time intervals. The cyclic waveform was created by switching a
voltage source on and off or back and forth between values to charge the circuit of
appendix B. The output of this circuit was then used as the input to the amplifier. Test
data were sampled using a Lego® RCX computer coupled with a high accuracy voltage
measuring interface from Lego Dacta®. Data were captured using LabVIEW® Software
from National Instruments. The number of samples was determined by using the Monte
Carlo sampling technique described in section 2.1 for a width of'a 0.1 volts and 95%
confidence.

A.1 Equation-Based Model

The Extend equation model of this circuit is provided in figure A-2.

—
Input Voltage

Plotter

Figure A-2
Amplifier Equation Model



As can be seen in figure A-2, an amplifier component was available in the modeling
package eliminating the need to construct the circuit of figure A-1. Equation-based
modeling is considerably easier and faster if modeling elements already exist within
libraries as compared to if they must be modeled from lower level elements.

A.2 Human Judgment Bayesian Network

The manually constructed Bayesian network model is provided in figure A-3.

Figure A-3
Amplifier Human Judgment Bayesian Network Model

The probability tables were created through multiple predictions from nine volunteers

who were provided with the test data shown in figures A-4 through A-8.
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Figure A-4
Amplifier Cycle 1 Test Data
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Figure A-5
Amplifier Cycle 2 Test Data
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Figure A-6
Amplifier Step 1 Test Data
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Figure A-7
Amplifier Step 2 Test Data
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Figure A-8
Amplifier Step 3 Test Data

The volunteers were then provided inputs shown in figures A-9 and A-10. These two
samples were chosen so as to sample one of each type of waveform shown to the
volunteers. As previously described, the waveform generators were also circuits which
were made from commercial electrical components available from retail electronic supply
outlets. The inductors, capacitors and resistors were purchased in standard, mixed lots of
values. Components for the input circuits were randomly selected from these standard

values. All measurements were taken over a two minute period. Time constants for
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switching of voltages were obtained by dividing the time period by random selections of

even integers so that complete cycles were measured.

Volts (DC)

Time (sec)

Figure A-9
Amplifier Cycle Input Voltage
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Figure A-10
Amplifier Step Input Voltage

The volunteers provided the predictions shown in figures A-11 and A-12. Test data,

which the volunteers did not see, is provided for comparison.
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Figure A-11
Amplifier Cycle Output Predictions
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Figure A-12
Amplifier Step Output Predictions
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Participants were also asked to provide a confidence assessment between one and five for
their prediction with five assessing very high confidence and one assessing very little
confidence in the prediction. These confidence assessments were used as a weighting
factor during learning of probabilities. For each individual, the prediction was counted
the confidence assessment times one hundred during learning. This results in a final
probability table for the node “Output” where those who were more confident in their
predictions had a greater impact on the final distribution than those who were not as
confident. Confidence assigned was not an accurate predictor of accuracy. A comparison

of the error with confidence score is presented in figure A-13.
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Figure A-13
Amplifier Error versus Confidence
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As can be seen from figures A-11 and A-12, some of the predictions were very accurate.

However, there was no way to predict which score was the most accurate.
A.3 Formula Bayesian Network

A second Bayesian network was created using the same formula as was used in

the equation-based model. This model is shown in figure A-14.

Figure A-14

Amplifier Formula Bayesian Network Model

This network uses a uniform probability for the variable “Input” and the equations to

table option to calculate the “Output” probability distribution.
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A.4 Computer-Constructed Bayesian Network
The final model created using the computer software described in section 6.1 is
shown in figure A-15. The relation was manually constructed since there are only two

nodes in the network.

( Input )

\/

Figure A-15
Amplifier Computer Network Structure

For the computer-generated networks, two separate models were created for the two
different input functions. This was done because a node can have only one discretization
and tests conducted during development of the derivative method showed poor results
when radically different data sets were discretized for the same node. This condition is
present in that the cycle input and output are linear functions while the step input and
output are non-linear.

A neural net model was constructed for each waveform. The neural network is a
fully-connected hybrid network containing two hidden layers with a sigmoid transfer

function in the first and output layers and a Gaussian transfer function in the second
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layer. The network structure was the same for both waveforms and is presented in figure

A-16.

Figure A-16
Amplifier Neural Network Model

The cycle network was trained using the average data shown in figures A-4 and A-5.
This consisted of a data set with 100 observations for the cyclic network and 157
observations for the step network.

The Bayesian network shown in figure A-17 was constructed using the test data,

network structure of figure A-15 and neural network of figure A-16. The network was



constructed using a manual bin setting of 40 bins, normal distribution and average

variance.
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Amplifier Cycle Computer-Constructed Network
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The Bayesian network shown in figure A-18 was constructed using the step test data,
network structure of figure A-15 and neural network of figure A-16. The step network
used the average test database of 21 points. The network was constructed using a

selection of 20 bins, normal distribution and nearest value variance.
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Figure A-18

Amplifier Step Computer-Constructed Network

A.5 Model Comparison
The accuracy of each of the models for input values in figures A-9 and A-10 as

compared to the test data is provided in figures A-19 and A-20 respectively. Data are
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compared for each test point at the maximum sampling rate of the test equipment which

1s 0.02 seconds.

Error! Not a valid link.

Figure A-19
Amplifier Cycle Model Comparison

Error! Not a valid link.
Figure A-20
Amplifier Step Model Comparison
As can be seen in figure A-19, the amplifier amplifies the cyclic wave at very nearly the
gain of two with no observable non-linearity. All models do a good job of predicting this
function. The step function shown in figure A-20 has a non-linear region at the lower
portion of the step. This can be seen in figure A-10 as a small voltage of about 0.2 volts.
As can be seen in figure A-20, this same 0.2 volt reading is also present at the output.
The fact that there was no amplification as the signal was fed through the amplifier
supports a conclusion that this is noise at the input and output of the amplifier. The
formula models both amplified this input resulting in predictions that were high at the
lower portion of the step. The equation-based Extend model and the formula BN had
nearly identical results for the cyclic waveform but were slightly different for the step
waveform. This was due to the discretization of the continuous data in the formula BN.

The human judgment and computer constructed networks both learned this phenomenon
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from the learning data and did not amplify the noise. The human judgment network
underestimated the voltage at both the high and the low step.

The average percent error for each model is presented in figure A-21.

0.9 1

0.8 |

0.7 1

0.6 1

@ Equation

B Human Inference BN
OFormula BN

O Computer BN

0.5 1

Percent Error

0.4 1

0.3 1

0.2

0.1

Cycle Step

Figure A-21
Amplifier Average Percent Error

The computer generated Bayesian network had the lowest error while the human
judgment Bayesian network had the highest error in both cases.

The time to complete the tasks required to build each model was recorded to the
nearest minute. The results are presented in table A-1. The formula Bayesian network
had the lowest construction time while the human inference network had the highest.

Table A-1



Amplifier Model Construction Times
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Action in Equation-Based Human Formula Machine
minutes Model Inference Bayesian Learning
Bayesian Network Bayesian
Network Network
Construct Model 8 5 5 1
Prepare Data - 11 - -
Survey
Collect Data - 83 - -
Process Survey - 36 - -
Data
Construct Neural - - - 7
Network
Computer - - - 12
Generation of
Final Model
Update - 3 - -
Probabilities
Total Time 8 138 5 20
(mins)

As can be seen from table A-1, the collection and processing of data from human experts

is a time consuming process. On average, it took approximately 8 minutes per person to

make the predictions and 4 minutes to process the data.
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APPENDIX B



B. LRC Circuit Models

The models of this appendix are a virtual representation of an electrical circuit
with an inductor, capacitor and resistor wired together in series and driven by a 9-volt
battery. The electrical wiring schematic of the circuit is provided in figure B-1. The
objective of the models is to predict the voltage across resistor R when the switch is

closed at time zero.

Figure B-1
LRC Circuit Schematic
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The inductor, sometimes called a choke, resists a change in current flow. This results in a
delay in the rise of the voltage when the switch is closed. The resistor determines the
current flow in the circuit. The capacitor is a voltage storage device. If the capacitor has
no charge, the full voltage will be present across the capacitor. As the capacitor charges,
the voltage will decrease until it approaches zero when fully charged.
B.1 Equation-Based Model
The equation for this circuit is
Z(s) =R +s*L + 1/(s*C)
Solving the equation using initial condition Z(0) = oo yields
s"*L +s*R + 1/C = 0.

Using the quadratic equation and solving for the roots yields

s = -R/(2*L) + [R¥/(4*L?) — 1/(L*C)]"~.
This equation has three solutions. If the two roots are real and distinct, the solution is

V =A/R * exp(s;*t) + A»/R * exp(s2*t)

Ay =-A
A1 =[Vo/(L*s)]/[1-(s2/s1)]-

The other two solutions are for roots real and equal and for roots that are complex. For
the purpose of this model, only real and unequal root solutions are considered. The

Extend equation model of this circuit is provided in figure B-2.
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Figure B-2
LRC Equation Model

In this case, there are no model elements for the components of the circuit. The values of
voltage (V), inductance (L), resistance (R) and capacitance (C) are individual inputs
which are fed through a series of equation blocks. Roots s1 and s2 are determined and
the real solution for Al and A2 is solved. These values are used, along with time, to
solve for the current in the circuit. The voltage is then determined from the current and

resistance.
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B.2 Human Judgment Bayesian Network
The manually constructed structure of the Bayesian network model for human judgment

is provided in figure B-3.

Figure B-3
LRC Human Judgment Bayesian Network Model

The probability tables were created through multiple predictions from seven
volunteers who were provided with the test data shown in figure B-4. Test data were
sampled using a Lego® RCX computer coupled with a high accuracy voltage measuring
interface from Lego Dacta®. Data were captured using LabVIEW® Software from
National Instruments. The number of samples was determined by using the Monte Carlo
sampling technique described in section 2.1 for a width of'a 0.1 volts and 95%
confidence. The inductors, capacitors and resistors were purchased in standard, mixed
lots of component values. A two second measurement period was selected for test
measurements. Using the derived equations, a subset of components was selected that

provided responses that could be measured over a two second period. The components
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for the tests were then randomly selected from this subset. A deliberate attempt was
made to find an inductor value that would provide a measurable delay in the voltage rise.
Unfortunately, in this application a value of approximately one Henry would be required
while the largest commercial value was 300 micro Henries. The minimum sampling rate
of 0.02 seconds was too great to measure the delay. This resulted in test data where
changing the value of the inductor had no measurable impact on the output of the circuit.
Eight combinations of input variables were tested with the results provided in

figure B-4.

—— 1.8K 100uF 100uH
—&— 1.8K 100uF 25uH
1.8K 330uF 100uH
== 1.8K 330uF 25uH
== 1K 100uF 100uH
—&— 1K 100uF 25uH
== 1K 330uF 100uH
—— 1K 330uF 25uH

Volts (DC)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 20
Time (sec)
Figure B-4

LRC Test Data
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These data were provided to the test volunteers. The volunteers were asked to provide
predictions for the following different circuit values: 1KQ 220 pF 100 puH, 2.8K€Q 220 pF
100 pH, and 2.8KQ 220 pF 300 uH. The three cases were chosen to look at predictive
accuracy where one, two and all three input values were different than those shown to the
participants. This provided three problems that became gradually more difficult to
predict.

The volunteers provided the predictions shown in figures B-5 through B-7. Test

data, which the volunteers did not see, are provided for comparison.
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=d¥=Test Data

Volts (DC)
e

+ @ % X

Time (secs)

Figure B-5
1KQ 220 pF 100 puH Predictions
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2.8KQ 220 pF 100 pH Predictions
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Figure B-7
2.8KQ 220 pF 300 pH Predictions
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Participants were also asked to provide a confidence assessment for their prediction.
Assessments were on a scale of 1 to 5 where 5 corresponds to very high confidence and
one corresponds to very little confidence in the prediction. This confidence was then
multiplied by one hundred and used as the number of times that the prediction was
counted during learning of probability tables. This resulted in a non-uniform prior for
learning of the probability tables, ensuring that errors measured from this network were
the result of the construction method and not residual probabilities caused by having only
seven predictions.

The confidence assessments had mixed results when compared to predictive
accuracy. The 1KQ 220 pF 100 pH predictions results were correlated between

confidence and predictive accuracy as shown in figure B-8.

Volts (DC)
B~ w N

*
= .
\ . o
4 - < R e==Test Data
] *
>
3 ] *

Time (sec)

Figure B-8
LRC 1KQ 220 pF 100 pH Confidence versus Accuracy
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All but one confidence assessment in the 2.8K€Q 220 uF 100 pH predictions was ranked
as three. The 2.8KQ 220 pF 300 puH predictions showed an inverse relation between

confidence and predictive accuracy as shown in figure B-9.

* 2
.3
e Test Data

Volts (DC)

1 1.2 14 1.6 1.8 2

Time (sec)
Figure B-9
LRC 2.8KQ 220 pF 300 pH Confidence versus Accuracy

B.3 Formula Bayesian Network

Another Bayesian network model was created using the same formulae as those

used for the equation based model. The formula Bayesian network is presented in figure

B-10.
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Figure B-10

LRC Formula Bayesian Network
The formula Bayesian network model was first constructed using intermediate variables
like the equation model of figure B-2. When the equation to table option was executed,
the variable “Volts Out” contained a mixture of real and imaginary numbers. This was
caused by a second order equation with both real and imaginary roots. When the
equation to table option is executed, each node with a formula calculates outputs for
every combination of inputs. Some combinations resulted in imaginary numbers which
continued through calculations to the “Volts Out” node. The network was modified to
put all formulae into node “I” of figure B-10 to avoid the generation of imaginary

numbers. This is a limitation of the Netica software package.
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B.4 Computer-Constructed Bayesian Network

The final model created using the software described in section 6.1 is shown in
figure B-11. The network structure was determined using the BN PowerConstructor
program. The program correctly found that the value of the inductance (L) had no effect

on the outcome.
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Figure B-11

LRC BN PowerConstructor Model
The BN Builder program required a trained neural network as an input to predict cases
that were not contained in the input training set. These cases were the same ones the

human volunteers were asked to predict. The input neural network was a fully-connected
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hybrid network containing two hidden layers with a sigmoid transfer function in the first
and output layers and a Gaussian transfer function in the second layer. The network

structure is presented in figure B-12.

(51|

Figure B-12
LRC Neural Network Model

The network was trained using the average data shown in figure B-4. This consisted of a
data set with 808 observations.
The Bayesian network shown in figure B-13 was constructed using the test data,

network structure of figure B-11 and neural network of figure B-12. The network used
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the entire test database of 11339 observations. The network was constructed using a

fixed number of 40 bins, normal probabilities and average variance as input options.
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Figure B-13

LRC Computer-Constructed Network
B.5 Model Comparison
The accuracy of each of the models compared to the test data is provided in

figures B-14 through B-16.
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Figure B-14
1KQ 220 pF 100 uH Model Comparison
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Figure B-15
2.8KQ 220 pF 100 pH Model Comparison
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Figure B-16
2.8KQ 220 pF 300 pH Model Comparison

The average percent error from the mean test data for each model is presented in figure

B-17.



201

B Equation

B Human Prediction BN
OFormula BN
OComputer BN

Percent Error

1K 220uF 100uH  2.8K 220 uF 100 uH  2.8K 220 uF 300 uH Average

Figure B-17
LRC Model Percent Error Comparison

On average, the human judgment model had the worst accuracy while the computer
generated Bayesian network had the best accuracy.
The time to complete the tasks required to build each model was recorded to the

nearest minute. The results are presented in table B-1.
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LRC Model Construction Times
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Action Equation-Based Human Formula Machine
(minutes) Model judgment Bayesian Learning
Bayesian Network Bayesian
Network Network
Develop 27 - 27 -
Equations
Construct Model 66 4 76 3
Prepare Data - 47 - -
Survey
Collect Data - 85 - -
Prepare Survey - 183 - -
Data
Construct Neural - - - 5
Network
Computer - - - 41
Generation of
Final Model
Update - 13 - -
Probabilities
Total Time 93 332 103 49

The human judgment model had the highest construction time while the computer

generated model had the lowest. The average time per human prediction was

approximately 10 minutes while the average to process the data was 22.




203

APPENDIX C



C. NACA Wing Models

This set of models is a virtual representation of the lift coefficient produced by
wing airfoil shapes. The National Advisory Committee for Aeronautics (NACA), the
forerunner of NASA, created a four digit nomenclature to identify wing shapes. All
numbers in the four-digit NACA wing identifiers are expressed in relation to the length of
the wing chord which is the distance from the tip of the leading edge to the trailing edge
of the wing. The first digit identifies the maximum height of the wing mean line, a line
equidistant between the upper and lower wing surface, expressed as a percentage of the
chord. The second digit identifies the distance from the leading edge that the maximum
height is located expressed in tenths of the chord. The third and fourth digits identify the
maximum thickness of the airfoil expressed as a percentage of the chord. These numbers

are illustrated in figure C-1.
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—e— Mean Line
—#— Upper Surface
Lower Surface

Figure C-1
NACA 2318 Wing Example

A NACA-2318 wing has the mean line a maximum of 2% above chord with this
maximum located 30% from the leading edge. The maximum wing thickness is 18% of
the chord.
C.1 Equation-Based Model

The equation model for predicting the lift coefficient was created by Kevin Jones
of the Aeronautical Engineering Department at the Naval Postgraduate School. This
model is a public domain model and is used with permission from the author. It can be

viewed at http://www.aa.nps.navy.mil/~jones/online tools/panel2/. The model uses a
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panel code method to compute the pressure differential over the wing surface by partial
solution of the Navier-Stokes Equations for fluid flow. Direct solution of the entire
system of equations is not feasible, even with today’s powerful computers. The
coefficient of lift (Cy) is then calculated from this pressure data. The panel code method
is limited to angles-of-attack in which flow separation does not occur and subsonic
airspeeds. Further information on the formulae and methods used can be found at the
above web address. The air pressure distribution for a NACA 2318 wing at 6.0 degrees
angle-of-attack (AOA) is shown in figure C-2. The angle-of-attack is the angle between
the chord of the wing and the air stream impinging on the leading edge. All data
collected from this model were collected at a resolution of 100 panels, the highest

possible resolution.
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Figure C-2
NACA 2318 Air Pressure Distribution

C.2 Human Judgment Bayesian Network
The manually constructed Bayesian network structure for human judgment is

provided in figure C-3.
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The probability tables were created through multiple predictions from eight volunteers
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Figure C-3

Human Judgment Bayesian Network Model
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who were provided with the test data shown in figures C-4 and C-5. Test data were taken

from the book The Theory of Wing Sections by Abbott and Doenhoff and are based on

wind tunnel tests. All test data used is measured at a Reynolds Number of 6.0 x 10°

which provides a reasonable match to the limitations of the equation model. No accuracy

was provided for the measurements.
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Figure C-4
NACA Thin Wing Wind Tunnel Test Data
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Figure C-5
NACA Thick Wing Wind Tunnel Test Data
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The volunteers were asked to provide predictions for NACA 1412 and NACA 4421
wings. These two wings were chosen so that one wing is a relatively thin airfoil while
the second was a relatively thick airfoil. The exact wing in each category was chosen at
random. The volunteers provided the predictions shown in figures C-6 and C-7. Test

data, which the volunteers did not see, are provided for comparison.
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Figure C-6
NACA 1412 Human Judgment Predictions
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Figure C-7
NACA 4421 Human Predictions

Participants were also asked to provide a confidence assessment between one and five for
their prediction with five assessing high confidence in their prediction and one assessing
low confidence in the prediction. Each confidence assessment was multiplied by 100 and
to determine how many times that prediction was counted during learning of the
probability tables. The confidence assessments again did not have a strong correlation
with predictive accuracy. The comparisons for the NACA 1412 and 4421 wings are

shown in figure C-8 and C-9.
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Figure C-8
NACA 1412 Confidence versus Accuracy
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Figure C-9
NACA 4421 Confidence versus Accuracy
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C.3 Computer-Generated Bayesian Network
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A computer model using the software described in section 6.1 was used to create

a computer-generated model. The network structure was determined using the BN

PowerConstructor program and is presented in figure C-10.
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Figure C-10

two cases were the same wing shapes the human volunteers were asked to predict. The
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neural network was a fully-connected hybrid network containing two hidden layers with a
sigmoid transfer function in the first and output layers and a Gaussian transfer function in

the second layer. The network structure is presented in figure C-11.

SETE

Figure C-11
Wing Neural Network Model

The network was trained using the data shown in figures C-4 and C-5. The training data

consisted of 252 observations.
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The computer constructed Bayesian network shown in figure C-12 was
constructed using the test data, network structure of figure C-10 and neural network of
figure C-11. A fixed number of 40 bins were used and probabilities were created using
the Netica learning algorithm. The normal probability option was not programmed for a
single continuous node with all discrete parents. The probability tables were updated
using the output learning set of the program and a frequency of 5000; the same weight if
ten volunteers had all assessed a confidence of 5. This number insured that accuracy
comparisons were not influenced by residual probabilities in node “CIl” caused by the

high number of bins selected.



A0,

i] T Cl
1 e <178 173
2 e A28 te-105 228
4 HiE -105tc-0874 2£4
206+ 1.4 087 o 085 2.8
O56te-051 240
081 te-0726 296
07B/to-065 206
T DESZ to 065 178
0 67 mi 0685 te-0621 221
4 227 (— W02 to 04952 209
aa3+ 15 04963 to 0428 235
048 t0-0295 3.8
0246 10 -0.215 194
0215t -014 204
Thres 044 te -00F8 2R
0 22 i 00Ste0139 325
q 5 043t 0494 24
2 ] S ___________i 0184t 0334 2O
03to03@3 299
if el 030 to 0427 2.7
0.7 to 0554 296
0554t OED7 296
Four 0607 ta0EZF 250
0 11.1 0EF to 0723 20
1 111 0725 to 075 178
i 22 07510 0.77 1.79
g 11.1 077 to 07701 174
5 111 0.77 to 0.774 166
g 5.56 077 to 0864 306
g8 22 OE5d4te DS 29
g 556 0950 to 1.08 284
108 ta 1.15 246
sdbioe 1,15 to 1.2 230
12110 1.27 268
127 to 1.22 1.74
123 t0 1,20 204
179t0 1.3 166
13te 120 280
1.3 ta 1.41 2.4
Figure C-12

Wing Computer-Constructed Network
C.4 Model Comparison
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The accuracy of each of the models compared to the test data is provided in

figures C-13 and C-14.
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NACA 1412 Model Comparison
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NACA 4421 Model Comparison
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As can be seen in figure C-14, flow separation begins to occur at about six degrees AOA
with an associated loss of lift. The average percent error for each model is presented in
figure C-15.
0.45
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S
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g B Equation
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I OMachine Learning
g 0.2
>
<
0.15

0.1

0.05

NACA 1412 NACA 4421

Figure C-15
Model Percent Error Comparison

All three models had similar accuracy for the thinner NACA 1412 wing. The equation-
based model had much higher error for the NACA 4421 wing. This was caused by flow
separation that caused a loss of lift at extremely low or high angles of attack. The
equation model could not predict that this loss of lift would occur. Both the human
judgment predictions and the computer-generated network learned that this phenomenon

would occur in thicker wings, resulting in a more accurate prediction than the equation-



219

based model. The computer constructed Bayesian network had the lowest error in both

cascs.

The time to complete the tasks required to build each model was recorded to the

nearest minute. The results are presented in table C-1.

Table C-1
Wing Model Construction Times

Action Equation-Based Human judgment Machine Learning
(minutes) Model Bayesian Network | Bayesian Network
Develop Equations - - -
Construct Model 480* 4 3
Prepare Data Survey - 47 -
Collect Data - 77 -
Process Survey Data - 183 -
Construct Neural - - 5
Network
Computer - - 41
Generation of Final
Model
Update Probabilities - 13 1
Total Time 480* 324 50

* The time for the equation model is an estimate from the author to build the model today
using current modeling tools.

Note that in these models the human judgment still has a high time associated with

collecting the human predictions (307 minutes), but the total time is still less than that

estimated to create the equation-based model. The average time to make the two

predictions was 11 minutes per person and the average time to process one pair of

predictions was 26 minutes. The data survey preparation time of 47 minutes is not
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effected by the number of predictions. The time to collect a single pair of predictions

would be approximately 84 minutes.
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APPENDIX D



D. Elevator Control Models

This set of models is a logical representation of the control system for an elevator.
The model is constructed to demonstrate the differences in construction time between
rules programmed in an equation-based modeling and simulation package and the same
rules implemented in a Bayesian network. Because all models implement a fixed set of
rules, no optimization is required. Accuracy is measured as the outcome of movement to
determine if the elevator moved to the correct floor. For the computer constructed
network, it is assumed that a measuring device was placed on the elevator to record its
operation over a time period sufficient to capture 1612 elevator movements. Because
attaching a recording device to an elevator control could possibly potentially impair its
operation causing a safety issue, the data for the computer-generated Bayesian network
was generated by recording the elevator movements of the equation-based model
implemented in rules.

There are four levels (ground, one, two and three) in the building that the elevator
services. The elevator has four selection buttons, one for each floor. The ground and
third floor each has a single call button. The first and second floors each has two call
buttons; one for up and one for down. Each button can be either selected or not selected.
The elevator can be headed in either the up or down direction of travel. It will be at one

of the four floors when a decision must be made as to which floor to move to next. If no
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buttons are selected, the elevator remains at its current position. There are therefore 8192
possible combinations of these variables. The control logic of the elevator is to continue
to move in a single direction stopping where either a floor has been selected or a call
button has been activated requesting movement in the direction the elevator is traveling.
The elevator stops at the closest floor moving in its current direction. When the elevator
has either reached the ground or third floor or there are no buttons selected in the current
direction, the elevator will reverse direction and begin the same logic in the opposite
direction.
D.1 Equation-Based Model

The first part of the equation model, shown in figure D-1, determines whether a

button has been pushed and which floors are currently requesting a stop.
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Figure D-1
Elevator Button Selection

The buttons with a “D” prefix represent a selected destination while the “C” prefix
represents a call button. The suffixes “U” and “D” indicate the up or down directions.
The output of the left column of OR gates is a generic set of conditions used to develop
the rules. For example, in the upper left block the output “G0” comes from input
conditions ground destination button selected or ground call button selected. The same
rule will apply if either or both of these conditions are present. This allows a set of 512
rules to be developed to cover the 8192 possible combinations of conditions.

The next portion of the equation model determines the direction and current

position of the elevator and routes the program to the correct set of rules for that position.

This is presented in figure D-2.
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Figure D-2
Elevator Position Rule Selection

Figure D-3 displays the rule model for the ground floor. There is a similar model for
each of the other three floors. The first block prevents the elevator from moving if either
ground floor is selected or the ground floor call button is active since the elevator is
already on the ground floor. The second block sets the direction to “up” since that is the
only direction the elevator can travel. The third block checks to see whether any button
has been depressed. If no button is depressed, the elevator does not move and the control
loops back to the beginning. If a button has been depressed, the program is routed to the
fourth block to determine which button(s) are depressed. The fourth block determines to
which floor the elevator will move. This block starts from the top down and moves to the
floor of the highest priority button selected. The remaining blocks choose the floor and
direction. For example, if the first floor down call button were selected, the program
would check first to see if either floors 1, 2, or 3 or call buttons 1 up, 2up or 3 were
selected and then take the fourth branch which selects destination first floor and resets the

direction to “down”.
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Figure D-3
Elevator Move Rules

D.2 Manually Constructed Bayesian Network

The manually constructed Bayesian network model is provided in figure D-4.



The probability tables were created by manually inserting the values into the network
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Figure D-4
Elevator Manual Bayesian Network Model
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CPT tables by the author. This was accomplished by manually entering a probability of

100% in each row of the probability table for node “Destination” for the correct floor

based on the input values. A zero was entered into all other cells of the row. As can be

seen in figure D-4, the nodes “FU”, “FD”, “SU” and “SD” serve the same function as the

OR gates in the equation model reducing the total number of rules required to cover all

conditions. All other nodes were set to uniform probability.



D.3 Computer-Generated Bayesian Network

A model constructed by machine learning is presented in figure D-5. The

relationship was constructed using the BN PowerConstructor program.
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The network was trained using data generated by the equation model output. This
consisted of 1612 data sets. This data set consisted of all discrete values and had no
missing values. Use of the BN Constructer program was not required.

The accuracy was the same for all models with each model sending the elevator to
the correct floor. The time to complete the tasks required to build each model was
recorded to the nearest minute. Times are for construction of the control system only and

do not include integration with the elevator model for final test. The results are presented

in table D-1.
Table D-1
Elevator Control Construction Times
Action Equation Model Human Inference Machine Learning
(minutes) Bayesian Network | Bayesian Network
Develop Rules 9 9 9*
Construct Model 197 120 8
Total Time 206 129 17

* Because the data was generated from the simulation instead of recording it, the time
used to manually record the rules is assessed to the computer-generated model.
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APPENDIX E



E. Radar Models

This set of models is a virtual representation of an airborne radar. Radar is a
search and tracking system that detects targets via electromagnetic transmission and
reflection. Pulses of radio energy are emitted by the radar transmitter into the air. If a
radar reflective target is within the range of the radar, the pulse is reflected back from the
target and is picked up by the radar receiver. For airborne radar, the transmitter and
receiver are collocated. There are a number of variables that affect the maximum range a
specific radar system can detect a target. The AN/APG-66(V)2 radar, used on foreign
export model F-16 aircraft, is the system that is modeled for this problem. All data are
unclassified.

Detecting a target by radar is a very complex phenomenon. There are two general
properties of the influences that affect the radar signal: gains and losses. Gains
strengthen the signal and increase the range of the radar. An example of a gain is the use
of a focused antenna that concentrates the signal into a smaller area of space. Losses
weaken the signal decreasing the range of radar. Covering the antenna with a radome to
protect the radar and provide an aerodynamic outer surface to the fuselage of the aircraft

results in losses as the signal must pass through the covering.
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E.1 Equation-Based Model

To predict the maximum range of specific radar, the radar range equation has
been developed. This equation does not capture the entire complex phenomenon
involved in actual radar operation. It is a useful design tool to predict the relative
magnitude of change a system will experience when a parameter in the equation is
changed. It is an excellent example of a system for which complete equations to describe
its operation currently do not exist. The radar range equation’ is

Rinax = [(P * G* * 6 * 1)) / (4n)” * L * Ppin)]"*
Riax 18 the maximum range
P is the transmitter power
G is the antenna gain
o is the target radar cross section
A is the radar wavelength
L is the loss coefficient
Piin 1s the minimum receiver power

Based on the published information in the Pilot’s Manual for the AN/APG-66(V)2 Fire
Control Radar as Installed In the U.S. Naval Test Pilot School’s Airborne System
Training and Research Support Aircraft manual, the factors affecting the losses are

L =KTO * Fn * Bn * RL * Squint * Xmit/Rec * Atmos * Fspace
KTO is Boltzmann’s constant times thermal noise
Fn is the noise figure for the radar
Bn is bandwidth noise
RL is radome losses
Xmit/Rec is transmitter/receiver losses
Atmos is atmospheric losses
Fspace is free space losses

The radar range equation applies to a spotlight radar that continuously shines its beam on

the target with the target in the center of the beam. The actual radar tests were conducted

" Equation from [Cohen et al. , 1992].
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with the radar in search mode. The beam of the radar in search mode is constantly
moving over a fixed search volume in search of the target. Thus, the target will be
illuminated for only a small portion of each search. As a result, the radar range equation
would provide an over optimistic prediction for a radar that is scanning a search volume.

In order to better match the equation to a radar in search mode, a factor for search
volume which approximates the effects of spreading the radar power over the search
volume. This introduces the terms 6, / Oy, and 6. / Oy, Where 6, is the horizontal sweep
angle, Oy, is the radar beam width, 0. is the vertical sweep angle and 0y, is the beam
height [Stimson, 1983]. This modified version of the equation has the effect of spreading
the radar power over the scan volume for each search scan. Although not exact, this
provides some additional losses to the denominator of the radar range equation to account
for the scanning motion. All data were collected in one bar 10 degree search mode. This
equates to an elevation sweep angle equal to the beam height and a sweep angle of 20
degrees (+10 degrees of the nose). The beam width is 3.25 degrees.

Since the final equation is complex and contains both very large and very small
numbers, a more convenient solution is to implement the equation in decibels. A decibel
is defined as

dB =10 * log 19 (x)
where x is any of the variables in the radar range equation. The numerator terms which

are the gains of the system for the equation model of the radar are shown in figure E-1.
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Figure E-1
Radar Equation Model System Gains

The denominator terms which are the losses in the system are shown in figure E-2.
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Figure E-2
Radar Equation Model System Losses

The gains and losses are combined and the output is converted from dB to nautical miles

as is shown in figure E-3.
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Figure E-3
Radar Equation Model Conversion to Nautical Miles

E.2 Formula Bayesian Network

Predicting radar range given input parameters would be a difficult problem for
anyone but a radar expert. Since none was available, a manual Bayesian network model
was created using the same formulae as the equation model. The manually constructed

Bayesian network model is provided in figure E-4.
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Figure E-4
Manual Bayesian Network Radar Model

The probability tables were filled in using the equation to CPT table function using the
same radar equations as the model of figure E-1.
E.3 Computer-Generated Bayesian Network

For the computer-generated model, radar performance data for radars operating at
similar frequencies were used and is presented in table E-1. The available data only
covered a target up to one dBsm in size. Therefore, data for 10 and 20 dBsm were
predictions obtained using the equation

R,=(R* * (02 / o1))"

where R is the range at radar cross section 6; and R is the calculated range at new o,.
The neural network used in construction of the final model could not be used for these
predictions because the required prediction values were well above the upper bounds of

the data set.
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Radar System Detection Ranges
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Name Freq (GHz) RCS (dBsm) Range (NMI)
RASIT-3190B 9 0.001 5
RASIT-3190B 9 0.01 9
RASIT-3190B 9 0.1 16
RASIT-3190B 9 1 28
RASIT-3190B 9 10 50
RASIT-3190B 9 20 89

Unknown 9.1 0.001 6
Unknown 9.1 0.01 10
Unknown 9.1 0.1 17
Unknown 9.1 1 31
Unknown 9.1 10 55
Unknown 9.1 20 98
AN/GPN-22 9.1 0.001 7
AN/GPN-22 9.1 0.01 12
AN/GPN-22 9.1 0.1 21
AN/GPN-22 9.1 1 31
AN/GPN-22 9.1 10 55
AN/GPN-22 9.1 20 98

PAR 10 0.001 5

PAR 10 0.01 9

PAR 10 0.1 16

PAR 10 1 28

PAR 10 10 50

PAR 10 20 89

A neural network for the RCS and Range data was created and is presented in figure E-5.

The neural network is a fully-connected hybrid network containing two hidden layers

with a sigmoid transfer function in the first and output layers and a Gaussian transfer

function in the second layer.

¥ From [Kincaid, 1993].
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Figure E-5
Radar Neural Network

The computer-generated model created from the data of table E-1 and neural network of

figure E-5 is shown in figure E-6.
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Figure E-6
Computer-Generated Bayesian Network Structure

This network demonstrates both an advantage and disadvantage of computer generated
networks. In this case, it is not necessary to include all of the constants and intermediate
variables of the radar range equation resulting in a much simpler model. The model can
accurately predict the range of a target of a given radar cross section. However, changes
in the output of a system caused by changing some of the variables not included in the
Bayesian network model may be of particular interest in an engineering trade study.

A comparison of test data with model predictions is presented in figure E-7.

Aircraft types are not identified as radar cross section measurements are classified.
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Figure E-7
Radar Model Accuracy Comparison

The average percent error for each model of figure E-7 is compared to the average

detection range for each aircraft with results presented in figure E-8.
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Figure E-8
Radar Model Average Error
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As can be seen in figures E-7 and E-8, the radar range equation does a poor job of

predicting actual radar range performance, even when the sweep correction is added.

The construction times for each model are presented in table E-2.

Table E-2
Radar Model Construction Times

Action Equation Model Formula Bayesian Machine Learning
(minutes) Network Bayesian Network
Develop Equations 124 124 -
Build Database - - 31
Construct Model 72 44 13
Total Time 196 168 44
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The computer constructed Bayesian network had the lowest time of construction. The
time for this particular model is higher than other computer generated networks due to the

requirement to manually adjust the learning data set.
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APPENDIX F



F. Forward Looking Infrared (FLIR) Models

This set of models is a virtual representation of the WF-360TL Forward Looking
Infrared (FLIR) system. This is an unclassified commercial system installed on a P-3
aircraft. FLIR systems detect targets using heat (IR energy). The target must have a
different temperature than the background in order for the target to be seen. The target
may be either hotter or colder than the background. Because the FLIR detects IR energy,
no visible light is required to detect an image. However, humidity in the air absorbs IR
energy and degrades system performance. FLIR systems work best in dry air and when
there is a very strong temperature differential between the target and background.

F.1 Equation-Based Model

FLIR systems are defined by two key specification parameters: the effective
minimum resolvable effective temperature difference and the spatial cut-off frequency.
The minimum resolvable temperature is the minimum difference between the temperature
of an object and the temperature of the background behind the object for it to be visible
on the display. The effective temperature accounts for the environmental effects of
humidity. The greater the relative humidity, the greater the reduction in effective
temperature difference from the actual temperature difference.

The spatial frequency (SF) is related to the size of the target. The SF formula is
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SF = SR /(2000 * TW)

SR = slant range in feet

TW = target width in feet
The spatial cut-off frequency SF, is related to the field of view of the display. Based on
the display size and resolution, there is a range beyond which a target will not be seen on
the display no matter how hot it is because it is too small to be seen on the display. This
FLIR unit has two display settings of Wide (WFOV) and Narrow (NFOV). The WFOV
has a look area of 11.1 degrees vertically and 14.8 degrees horizontally and the NFOV
area is 2.7 degrees vertically and 3.6 degrees horizontally. The display is a black and
white video image. Hot objects may be displayed in black with cooler objects in white if
“Black” is selected on the polarity setting. Similarly, hot objects are displayed as white
with cooler objects in black if “White” is selected. For this system, the effective
minimum temperature differential is 0.10 degrees C and the SF, is 1.54
cycles/milliradian (mrad) in WFOV and 6.33 cycles/mrad in NFOV. The final point that
defines the system is the minimum effective temperature at half the spatial cut-off
frequency. The specification value for this system is 0.33 degrees C. The spatial

frequency in cycles/mrad can be approximated by the formulae:

Tl=(1/cos(n/4)—1/ (AT — ATmin)
T2=n /2/SF¢

where T1 and T2 are temporary variables, AT}, is the minimum effective temperature
difference at ' the cutoff frequency, AT, is the minimum effective temperature
difference at the cutoff frequency and SF,, is the spatial cutoff frequency. The spatial
frequency is approximated using

SF = (1/T2) * acos(l / (T1 * (EAT - ATpmin) + 1))



247

where SF is the spatial frequency and EAT is the effective temperature difference
between the target and background.

A chart of system performance for both field-of-view settings is provided in figure F-1.

e=—=NFOV
—WFOV

Effective delta T (deg C)

Min Edelta T

Spatial Freq (cycles/mrad)

Figure F-1
WEF-360TL FLIR System Performance

The final set of equations converts the spatial frequency to the range from the target. The
maximum range in feet at which a target can be seen is
Rangenax = SFmax * 2000 * TW

where SFn.x = maximum spatial frequency for the EAT and TW = target width in feet.
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Any target that is at a range less than the one calculated in the above equation should be
visible on the display. The system has different spatial cutoff frequencies for the Wide
and Narrow settings so each setting will have a different maximum range.

The equation model for predicting FLIR detection range is shown in figure F-2.
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FOV

FOV Select

delta T (min)

!

delta T (1/2Fc)
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SFco Narrow

SFco Wide

S
Edelta T

Figure F-2
FLIR Equation Model

The switch at the top allows selection of either WFOV or NFOV. The upper set of inputs

provides the system specification values. The lower box “Edelta T” provides a range of
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effective temperature differential values to calculate the performance graphs on the right

side. Maximum range performance of the equation model is shown in figure F-3.

FLIR Detection Ranges
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Figure F-3
FLIR Equation Model Maximum Range Predictions

There is a significant difference in maximum range of the system depending on which
viewing mode is selected.
F.2 Formula Bayesian Network

A Bayesian network formula model was manually created using the same

equations as the equation model. The network is shown in figure F-4.
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Figure F-4
Manual Bayesian Network FLIR Model

The input nodes were set at uniform probabilities and the other node probabilities were
calculated using the equation to table option in Netica. The maximum range prediction

for this model is presented in figure F-5.
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Figure F-5
FLIR Formula Bayesian Network Maximum Range Predictions

These predictions are very similar to those obtained with the equation model shown in
figure F-3. Any differences are due to the discretization of the continuous data.
F.3 Computer-Generated Bayesian Network

Test data were provided by the U.S. Naval Academy Test Pilot School. Data
were recorded by students during training flights and have a high degree of scatter. This
is most likely due to measurement error as this was the first time many students had
attempted to operate this equipment while recording the data. This lack of operator
experience may also explain why the values recorded were consistently less than those

predicted by the equations. FLIR displays require operator tuning of the system gain to



252

optimize the display. The system also may not have been performing as well as possible
because of age, coolant servicing or calibration issues. Data were measured by flying at a
temperature controlled measurement board with alternating hot and cold bars 1.86 feet
wide. When the operator could distinguish between two bars of different temperatures,
the range and temperature delta were recorded. The effective temperature difference was
calculated after correcting for altitude and relative humidity. Data were collected using

both black hot and white hot polarity. Test data are displayed in figures F-6 and F-7.
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Figure F-6
FLIR NFOV Test Data
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Figure F-7
FLIR WFOV Test Data

A computer-constructed Bayesian network model was constructed using
the data of figures F-6 and F-7. The network structure determined by the BN

PowerConstructor program is provided in figure F-8.
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Figure F-8
FLIR BN PowerConstructor Model

Note that the BN PowerConstructor program found a relationship between the polarity of
the display and the slant range of the system. Theoretically, there should be no difference
in range caused by the polarity selection. This option is provided to allow a preference
for the operator as to viewing objects with the higher temperature objects showing as
either black or white on the display. However, plotting the data by polarity selection

clearly shows two distinct sets of data as shown in figures F-9 and F-10.
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Figure F-9
FLIR Narrow FOV with Polarity
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Figure F-10
FLIR Wide FOV with Polarity

Due to the unusual nature of the data, this discrepancy with theory was checked with the
U.S. Navy Test Pilot School who confirmed the same observation. Since this anomaly
does not appear in other systems, it is likely caused by a poorly designed display that
generates a better picture in black hot than white hot.

The neural network for the FLIR model is presented in figure F-11. In this case,
the neural network is used for data smoothing of the highly scattered data set and
generation of additional points for the learning database to ensure good probability

distributions.
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Figure F-11
FLIR Neural Network Model

The neural network is a fully-connected hybrid network containing two hidden layers
with a sigmoid transfer function in the first and output layers and a Gaussian transfer
function in the second layer. The final Bayesian network model, constructed using the
data of figures F-6 and F-7, the structure of figure F-8 and the neural network of figure F-

11 is presented in figure F-12.



The network was trained using the test data consisting of 71 observations.
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Figure F-12

FLIR Computer-Generated Bayesian Network Model

F.4 Comparison of Modeling Methods
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Comparison of the models with the test data are provided in figures F-13 and F-
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The average percent error for each model is presented in figure F-15.
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Figure F-15
FLIR Model Average Percent Error

Figure F-15 illustrates a major advantage the computer-generated model has over the
other two models. The computer Bayesian network was able to locate the unmodeled
variable “Polarity” resulting in two predictive curves for each field-of-view setting.
These two curves represent the data much more accurately than the single curve of the
other two models.

The time to complete the tasks required to build each model was recorded to the

nearest minute. The results are presented in table F-1.
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FLIR Model Construction Times
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Action Equation-Based Formula Bayesian Computer
(minutes) Model Network Generated Bayesian
Network
Develop Equations 70 70 -
Construct Model 35 38 4
Construct Neural - - 7
Network
Computer - - 4
Generation of Final
Model
Total Time 105 108 15

As can be seen in table F-1, the computer generated model requires far less time to

construct than either the equation-based model or formula Bayesian network.
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APPENDIX G



G. Radar Cross Section Model

The radar cross section of an object is defined as that area which, when multiplied
by the radar signal power density incident upon the target, yields a reflected power that, if
radiated isotropically by the target, would result in a return back at the radar equal to that
of the actual target [Masters, 1981b]. The radar cross section can be viewed as the
effective area of a flat plate that would reflect the same amount of energy as the object
measured in square meters [Knott et al, 1985]. For complex shapes, as radar energy
strikes an object, the reflected energy is scattered in different directions depending on the
shape of the object. For most cases, the radar transmitter, receiver and antenna are
located at the same position so the amount of energy is measured as the amount directly
reflected back to the antenna from the object. For simple geometric shapes such as
cones, spheres, cylinders or plates, mathematical equations exist that can approximately
calculate the radar cross section from the physical dimensions. Even for these simple
shapes, the radar cross section depends strongly on the aspect angle between the target
and the radar. It is also a function of the radar wavelength which is determined by the

transmitter frequency. Both of these influences can be seen in the examples of figure G-

1.
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Figure G-1°
Theoretical Radar Cross Section for a Flat Plate

For these two examples, the ratio of the size of the plate (L) in relation to the wavelength
of the radar is provided.

Unfortunately, most real world targets are not simple geometric shapes. One
method of predicting the radar cross section is to break down a complex shape into
simple geometric shapes. This method may provide a rough prediction of the radar cross
section across a sector of several degrees, but does a poor job of predicting the return at a
specific aspect angle. This is due to the multi-bounce phenomena where radar energy
reflected from one part of a complex object may be reflected one or more times off other
parts of the object. These multiple reflections will then constructively or destructively
interfere with each other on the return path to the radar receiver. An airplane is an
example of a radar target with a complex shape. The radar cross section measurement at

10 GHz for a B-26 aircraft is shown in figure G-2.

? From [Shaeffer, 1992]
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Figure G-2"
B-26 Radar Cross Section

As can be seen from figure G-2, the radar cross section measurement can change
radically for small changes in aspect angle. Aspect angle can change because of motion
of the target, the radar or both. The strong relationship between radar cross section and
aspect angle explains why a target being tracked on radar may fade in and out at the edge
of the maximum range of the radar as the aspect angle changes between radar
transmission pulses. Thus, the performance of a radar detection system can fluctuate.
For this reason, radar performance is usually described in terms of detection probability
as a function of range.

Computer programs capable of predicting multi-bounce returns from complex
objects have been developed by both universities and industry. These programs are
complex and require special computer hardware to execute the extensive calculations.

Many of these programs use optical methods to predict radar scattering. This is

"%From [Masters, 1981b]



266
accomplished by breaking down complex shapes such as aircraft into a group of simple

geometric shapes. An example of a geometric model of the A-10 aircraft using plates and

cylinders is shown in figure G-3.

TOP VIEW SIDE VIEW

j REAR VIEW

20 PLATES
8 CYLINDERS

Figure G-3"'
A-10 Geometric Model

Although these models are capable of predicting the general areas of high and low
signature returns, they can not exactly predict the radar cross section of the actual
complex shape.

Developing an equation-based model is far beyond the scope of this research.
The task of predicting radar cross section from complex shapes is also much too complex

for human judgment. This effort is therefore limited to a machine constructed Bayesian

" From [Ryan, 1992]
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network. A radar cross section model is created for the B-26 aircraft of figure G-2 using

the Bayesian network construction software described in section 6.1. The model uses 40

bins and the normal probability option. The Bayesian network model is presented in

figure G-4.
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B-26 Computer-Generated Radar Cross Section Model

The model predictions are compared to the test measurements in figure G-5.
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Figure G-5
B-26 Radar Cross Section Comparison

The model prediction of figure G-5 shows the average cross section in square meters for
the aircraft. The network also provides the range of values over which the radar cross

section may vary as shown in figure G-6.
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RCS Bayesian Network Prediction
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As can be seen from figure G-6, the radar cross section for 0 — 11.8 degrees is 22.8 + 2

square meters.

Another advantage of Bayesian networks is that individual networks can be

integrated with each other to solve complex problems. This is demonstrated by

integrating the radar cross section model of figure G-6 with the computer-generated radar
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model constructed in appendix E to calculate the probability of detection of the radar

against this target. The integrated model is shown in figure G-7.
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Figure G-7

Integrated Radar-RCS Bayesian Network Model
The probabilities in node “Range” are the individual probabilities for each bin at which
the target will first be observed. These probabilities can be combined to find the

cumulative probability of detection as shown in figure G-8.
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Cumulative Probability of Detection
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Figure G-8

Cumulative Probability of Detection for B-26 Aircraft at 0-11.8 Degrees Aspect Angle
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APPENDIX H



H. Loan Application Process Simulation

The loan application process simulation is a virtual representation of the business
processes used to approve or disapprove loan applications. This model is used to
demonstrate business process reengineering simulation. The model looks at different
screening processes used to route loan application forms through a loan application
office. Times used for the processes are those provided with the original model. Due to
privacy laws, actual loan application data was not available to test which method did the
best job of screening the applications. Applications were generated by a random
application generator for screening. Performance measurements are therefore limited to
which processes can screen the most forms with the least amount of human labor.

The original simulation is shown in figure H-1.
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Figure H-1"
Loan Process Simulation

12 Simulation provided with the Extend Version 5 software package. Author unknown.
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The process begins with applications coming into the office. There are two workers in
the operation. Each application is given an initial review by a worker taking 12 to 16
minutes per review. If the application meets criteria set by the company for approval, the
application is accepted. If it does not meet the initial screening requirements, the
application is then forwarded for a second, more thorough review which takes 25 to 35
minutes after which a final determination of accept or reject is made. The simulation is

run for a 40 hour work week with results presented in figure H-2.
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Figure H-2

Loan Screening Simulation Baseline Performance
From figure H-2, the baseline performance for the two workers is 225 applications
processed with a maximum backlog of 10 applications. Worker utilization is 0.95
meaning that the two workers are processing applications 95% of the time and are idle

awaiting applications 5% of the time.
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The model of figure H-1 is next modified to investigate the improvements that

could be achieved by automating part of the process. The modified model is presented in

figure H-3.
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Figure H-3
Loan Application Rule Screening Modification

The file generator is modified to produce the same number of applications but adds six
attributes to each: credit history, marital status, age, income, assets and debt. A random
case generator was constructed to generate random cases that would generally follow
demographic patterns and follow conventional knowledge concerning the likelihood of

loan repayment. The first part of the file generator is shown in figure H-4.
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Figure H-4
Age, Marital Status and Income Probabilities

The applications are first assigned a marital status with 25% of applicants single, 45%
married and 30% divorced. Single people are then routed and assigned a random age and
income that on average is lower than that of married or divorced people. The process

then continues in figure H-5.
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Income

Figure H-5
Asset and Debt Probabilities

The model looks at income and then assigns a random value for assets and debts;
however, the routing is set up such that those with higher incomes have more assets and
fewer debts while those with lower incomes have generally lower assets and higher debts.

The process then continues in figure H-6.
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Figure H-6
Credit History and Risk Probabilities

The final process calculates the difference between the sum of income and assets and the
debt. Applicants are then assigned a random credit history. Those with high positive
values of the calculation are assigned a higher probability of a good credit history while
those with a negative score are more likely to have a bad history. Intermediate scores are
more likely to have intermediate credit ratings. The final assignment of risk is whether
the loan was repaid. Those with good credit histories are more likely to repay than those
with poor credit histories. Those with intermediate credit scores have values in the
middle. The result is a wide combination of cases for review with trends that generally

fit conventional wisdom with respect to the general population.
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The first screening process done by workers in the baseline is replaced by a

computer screening of the applications. The first part of the computer screening process

is shown in figures H-7.

yoooo
Income Check

Figure H-7
First Loan Screening Process

The loan screening process is designed to flag any application that has any negative
information. Applications which have no negative information are approved while those
that contain one or more negative items are routed to the two workers for the second
review. The process begins in figure H-4 by first checking credit histories and flagging
any file with negative information. It then checks debt and assets to identify applications
where debt is greater than assets. If debts are greater than assets, it flags any application
where the difference is greater than 20% of current income. It then checks age and flags
any application submitted by someone under 25. The process continues as shown in

figure H-8.
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Figure H-8
Second Loan Screening Process

The process continues with a check to determine marital status. Those who are divorced

have their applications flagged. Those who are single are flagged if they have less than

$30,000 per year total income. Those who are married are flagged if they have less than

$50,000 per year total income. This completes the screening process with all flagged

files going to a second review with all non-flagged files approved without further action.
The simulation is then run to determine the impact on the loan application

approval process. The results are presented in figure H-9.
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Loan Application Rule Screening Results

The result is 184 applications processed with a maximum backlog of 41 applications and
worker utilization rate of 100%. At first glance, the results are opposite to what one
would expect. If the computer is doing the first screening of the applications and the
workers now only have to do the second screening, why would it take longer? After
further investigation, it was determined that the criteria used to screen the applications on
the first screening by the computer was stringent resulting in a much higher number of
files being sent to a second review than occurred during the original process. Because the
second review is more thorough and takes longer, the end result was a higher workload
for the two workers resulting in negative performance improvements by introducing
automation into part of the process. Although there was no intent to have the results

come out this way, it does show the importance of modeling and simulation in business
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process reengineering. It also demonstrates that adding automation does not always
result in a better process.

A second computer screening process change is also evaluated to determine its
impact on the loan application process. This approach is the same as described above
except that instead of using the rule-based screening approach, the applications are now

initially screened by a Bayesian network. The Bayesian network is presented in figure H-

10.
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Figure H-10
Loan Application Screening Bayesian Network

The network structure was manually input and the probabilities were learned from a case
file of previous loan applications. This file was generated by the same case file generator
as is used to generate the loan applications for the simulation with the additional

information of whether or not the loan was repaid. The simulation is the same as that
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shown in figure H-3 except that the computer screening of applications is changed to that

shown in figure H-11.
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Figure H-11
Loan Screening Bayesian Network Integration

The network is opened and compiled on the first instance of an application. All six areas
of interest are set into their respective node states. The program then retrieves the
probability that someone with this set of factors will repay the loan. If this probability is
75% or higher, the loan is approved without further review. If below 75%, the
application is sent to the workers for a second review.

This simulation is now run under the same set of conditions. The results are

presented in figure H-12.
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Bayesian Network Screening Results

40

284

The result is 228 applications processed with a maximum backlog of 3 applications and a

worker utilization rate of 0.58. This demonstrates a substantial improvement over the

original process. Human labor has been reduced by nearly half. If the model is rerun

with only one worker for the second review, the results of figure H-13 are obtained.
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Bayesian Network Screening with One Worker
The result is 225 loan applications screened with a maximum backlog of 13 applications
and a worker utilization rate of 100%. This is the same number of applications screened
with a maximum backlog increase of only 3 as compared to the original two review loan
approval process.

The time to construct the screening portions of each model is presented in table
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286

Computer Screening Process Construction Times

Rule-Based Model Bayesian Network Model
(minutes) (minutes)
Construct Bayesian - 15
Network
Modify Loan Model 43 16
Total 43 31

Overall results demonstrate that the Bayesian network is far more effective in

screening the application than the simplified rule-based screening process. Although the

case files were not real loan applications, this simulation does show that Bayesian

networks can learn from previous loan applications. The results should be no different on

real applications as long as there the Bayesian network can adequately represent relevant

patterns in the data.
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APPENDIX I



I. Car Repair Process Simulation

The car repair process simulation is a virtual representation of the electrical shop at an
automotive repair facility. The original simulation was constructed by the author and is

shown in figure I-1.

Dave's Car Repair

Input Output
Car Generator Service Center Exit & Stats

Figure I-1
Car Electrical Repair Simulation

The process begins with cars coming into the service center. The “Car Generator” block
creates a stream of cars that come into the service center with reported electrical
problems. The model is set up to run on a standard 40 hour work week. Most cars are
dropped off in the morning although a smaller number come in throughout each day. The

“Car Generator” block is shown in figure I-2.
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Figure I-2
Car Generator Block

The cars are assigned one of four electrical problems as follows: 33% are bad batteries,
22% have bad alternators, 25% have bad starters and 20% have short circuits in the
electrical system. Once the fault has been determined, the results of three diagnostics are
assigned as follows: does the battery hold a charge, are the headlights bright or dim with
the engine running, and will the car jumpstart from another battery. In general, a car with

a bad battery will not hold a charge, a car with a bad alternator will have dim headlights
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when the engine is running, a car with a bad starter will not jumpstart and a car with a
short circuit can have any of the above symptoms. The diagnostics are not foolproof in
that some problems may create multiple symptoms and people dropping off their cars
may report symptoms in error. Random noise of one to eight percent is added to each
reported diagnostic to account for these variations. The cars are then routed to a holding
area until a mechanic is available to repair them.

The electrical repair shop for this center has three service bays and three

mechanics. The “Service Center” block is shown in figure I-3.

D_r—

Contin |—

S HR Average Cost

Add cost

=
Repair Time

A O
Get Fault

=
Repair Time

Figure I-3
Service Center Block
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As the car enters the service area, the fault assigned to each car is retrieved and a time to
repair is assigned. The car will be delayed in the service bay during the simulation for
this amount of time. The three workers have different repair times for each repair. The
first mechanic is the least experienced while the third mechanic is the most experienced.
While it would take about the same amount of time for each mechanic to change a bad
battery, it takes the more experienced mechanic much less time to isolate and repair a
short circuit than the inexperienced one. The second mechanic and the other repairs have
intermediate values assigned to each. Once repaired, cars are routed to the “Exit and
Stats” block.

The “Exit and Stats” block records the results for each car and calculates the

statistics over a 52 week operating period. The “Exit and Stats” block is shown in figure

I-4.

Cars Repaired

Row Row
x|y
Fault
R=CHT
Row 4 Fault
Figure 1-4

Exit and Statistics Block
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The fault along with each of the three diagnostics is written to a Microsoft Excel
spreadsheet. The number of cars repaired per week and the amount of money collected
per week are also calculated. The repair process is completed when cars exit the repair
shop and are returned to their owners.

A second model was developed by modifying the initial car repair model.
Whereas the baseline simulation routes cars to the mechanics on a first in, first out basis
this second simulation uses a rule-based approach to sort the cars into four waiting areas.
Cars are sorted by suspected fault based on diagnostic indications. The sorting

modification, which is added to the “Service Center” block, is shown in figure I-5.

Conlin
a

b ? =
select

a
b ? NE
Sim

select

Headlights

Jumpstal

Figure I-5
Rule-Based Sorting
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The rules are as follows: fails to hold charge only goes to area 1, dim headlights only
goes to area 2, fails to jumpstart only goes to area 3 and everything else goes to area 4.
This is designed to put cars with bad batteries in area 1, bad alternators in area 2, bad
starters in area 3 and short circuits in area 4. This ordering is the same as the degree of
difficulty of each repair. Mechanic 1, the least experienced mechanic, draws cars from
areas 1 and 2; mechanic 2 draws from areas 2 and 3; and mechanic 3 draws from areas 3
and 4. This sorting is designed to send the most difficult repairs to the most experienced
mechanic, who can repair them the most quickly. Drawing from two different holding
areas is designed to ensure that no one is idle awaiting a car to repair.

A third variation of the model was created using an influence diagram that makes
a decision as to which holding area the cars are routed based on maximizing the profit to
the repair shop. The influence diagram relations are a naive Bayes model and were
manually created. Probabilities were learned from the data captured in the Excel
spreadsheet as an output of the baseline model. The influence diagram is presented in

figure 1-6.
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battery 32.0 o
alternator 235 c
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Figure I-6
Influence Diagram Decision Model

The network communicates with the simulation via the blocks shown in figure I-7.

Start Network =E|%

select

Set Node State Set Node State

Set Node State Get Decision

a

A D
Jumpstart

AL
Headlights Holding Area

Figure I-7
Car Repair Network Integration
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The network is opened and compiled once the first time a vehicle comes through. The

indicators are applied as evidence to their respective nodes in the influence diagram.

Based on the diagnosis of the fault, the influence diagram then makes a decision as to

which holding area the car is routed based on optimizing the profit.

The three different simulations were run for 52 weeks each. Repairs are billed on

a fixed-price basis dependent on the actual fault. The results are presented in figure I-8.

16

14

12 A

10

number of weeks
©

|}

OBaseline
B Rule Routing
OBN Routing

i

24200

25450

26700

27950 29200 30450 31700 32950 34200 35450
dollars per week

Figure 1-8
Car Repair Simulation Comparison

As can be seen in figure -8, all methods result in Gaussian distributions. Routing the

cars based on an initial diagnosis results in improved revenue for the repair shop over the
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first in, first out baseline. Rule-based routing on average was 19.3% higher than the
baseline data while the influence diagram routing was 24.0% higher. Influence diagram
routing was more effective than rule-based routing because it had a higher rate of
correctly diagnosing the problem. The rule based approach used a simple screening to
attempt to match the symptom most associated with a fault to that fault while diagnosing
anything else as a short circuit. The influence diagram learned from previous data which
symptoms were associated with which faults. It was therefore more successful in
diagnosing faults from a noisy data set.

The time required to construct the diagnostic models is presented in table I-1.

Table I-1
Car Diagnostic Model Construction Times

Actions Rule-Based Model Influence Diagram Model
(minutes) (minutes) (minutes)
Build Influence Diagram - 8
Modity Baseline Model 34 22
Total Time 34 30
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APPENDIX J



J. Home Heating System Simulation

The home heating system simulation is a virtual representation of a house with an
oil furnace in the Washington DC area during the month of January. The model
represents a single story, 1875 square foot house with three doors and ten windows. The
model contains handbook insulation values for the materials selected. The baseline

model is shown in figure J-1.

Q

Tremos kal

Cuklle Temperakee °F

Figure J-1"
Home Heating System Model

" Model modified by the author to discrete operation from a model provided with the Extend M&S
package. Original author is unknown.
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The model consists of a house which is subjected to heat losses and gains. Losses occur
through the roof, walls, doors and windows shown at the top. The amount of heat loss is
a function of the outside air temperature which varies over each 24 hour period. The air
temperature is a sinusoidal function that varies between the high and low temperature of
each day. Heat gains are provided by the furnace element on the left side of the figure
which is controlled by a thermostat at the right side. The baseline thermostat model is

shown in figure J-2.

4"0n20ut I

Hy steresis

Figure J-2
Baseline Thermostat Model

The thermostat is set at 68 degrees F and has a 2 degree hysteresis (furnace turns on at 66
degrees and off at 70 degrees).

The model is executed over a 24 hour period simulating the interactions of the
house and furnace with the outside environment. The temperature data are provided in

figure J-3.
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Figure J-3

Baseline Temperature Data
The blue lower line displays the outside air temperature which varies from a low of about
20 degrees F to a high of about 40 degrees F. The upper line displays the inside air
temperature which varies between 66 and 70 degrees F as the furnace cycles on and off

throughout the day. The fuel consumption for one 24 hour period is shown in figure J-4.
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Figure J-4
Baseline Fuel Consumption Rate

The consumption varies over the period with outside air temperature. Consumption is
higher in the first half of the period corresponding to the low temperature portion of the
outside air temperature curve shown in figure J-3 and lower in the second half where
outside temperatures are higher. Fuel consumption for 24 hours under these conditions is
9.4 gallons.

The model is then modified with a programmable thermostat. The thermostat can
change the temperature setting four times per day. The modified thermostat model is

shown in figure J-5.
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Setting

{onZOut I

Hysteresis

Figure J-5
Programmable Thermostat

The thermostat is set as follows: 62 degrees from 10 PM to 6 AM, 69 degrees from 6 AM
to 9 AM, 66 degrees from 9 AM to 5 PM and 68 degrees from 5 PM to 10 PM. The
model is then run over a 24 hour period to simulate the interactions of the house with the

outside environment with the results shown in figure J-6.

Temp (deg F)
80

62.5eAMAAAAANANT o

45} - - - - - - - ]
27.5 \_//\
0 6 12 18 24
Time (hrs)
Outside — Inside
Figure J-6

Temperatures with Programmable Thermostat
Figure J-6 shows the four changes to the inside air temperature as the result of inserting

the programmable thermostat.
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The baseline model is modified a second time using a Bayesian network model of

a programmable thermostat. The temperature settings are the same as those used for the

programmable thermostat described above. The Bayesian network model is shown in

figure J-7.

Tempi

585to 585 714
995toGOS 714
B0StoB1S 7.4
61.5to 625 714
62510 B35 7.4
635to 645 714
G45toBaa 7.4
B25toBES 7.4
GES5to G673 7.4
G75to GBS 714
G85toBIS 714
G9.5to 705 714
705to7™Aa 714
15t0725 714

Time

Might 25.0
Afernoon  25.0
Evening 250
forning 25.0

Status
Off 50.0
on 50.0

Bayesian Network Programmable Thermostat

The network has three root nodes with “Temp1” for the current inside air temperature,

Power

=0
== 0

547
45.3

Figure J-7

“Time” for the time of day with each state set to a value of the thermostat setting for that

period and “Status” for the current status of the furnace (on or off). The “Power” node

uses a formula to determine if the furnace should be switched on or off with “<0” being

the switch on command and “>=0" being the switch off command. The thermostat of

figure 6 is then integrated into the baseline model by replacing the thermostat of figure J-

2 with the one shown in figure J-7. The integration blocks are shown in figure J-8.
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Figure J-8
Bayesian Network Thermostat Integration

In the first row of blocks, the model first determines which of the four time periods it is
in based on the time of the simulation. The model then sets the current inside air
temperature and the status of the furnace. In the second row, the Bayesian network is
opened and compiled on the first iteration of the simulation. The three states of nodes
“Templ”, “Time” and “Status” are then set in the Bayesian network. The most likely
state of node “Power” is retrieved which is then used to switch the furnace on or off in
the simulation. The simulation is then run over a 24 hour period with results shown in

figure J-9.
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Bayesian Network Thermostat Simulation
As expected, the result is a plot very similar to the results of the equation programmable
thermostat simulation.

Each model is then set to use a random normal distribution for the high and low
temperature of each 24 hour period using the mean and standard deviation for
temperature in the Washington DC area for the month of January. The simulations are
then run 30 times to calculate the fuel consumption distribution. The results are shown in

figure J-10.
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Figure J-10
Daily Fuel Consumption Comparison

The model timer and the Bayesian network timer simulations produced nearly the same
result. Both simulations that used timer thermostat models showed an average daily fuel
consumption of approximately one gallon less than the fixed thermostat of the baseline

simulation.

The time required to create the two timed thermostat models is shown in table J-1.



Table J-1
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Thermostat Model Construction Times

Actions Equation Timer Model Bayesian Network Timer
(minutes) Model
Model Construction 28 17
Model Integration 5 24
Total 33 41

Both timer thermostats used equations in the model construction. As expected, both

simulations provided about the same results and took similar times to build.
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APPENDIX K



K. Commuter Simulation

The commuter simulation is a virtual representation of driving an automobile
from Defense Acquisition University at Fort Belvoir, VA to the author’s home in Oakton,
VA during rush hour traffic. This is a difficult model to build using conventional
equation-based techniques because of a number of uncontrollable random factors such as
traffic density, accidents and weather which influence the outcome. It also demonstrates
the capability of the derivative method to discretize large numbers of continuous

variables simultaneously. The baseline equation model is shown in figure K-1.

16th St

Pohick
18th St Gunston Rd Ponick Rd Rte 1

Route 1 FC Parkway

Kingman Backlick

FC Parkway FC Parkway Terminal Ramp

FC Parkway 1-95N 1-495W

Hunter Mill

Miller Rte 123

Rte 123

Figure K-1
Equation Commuter Model

309



310

The model consists of all of the route segments and traffic lights along the entire trip. On
route segments, the model assumes the car will travel at the average speed limit for that
leg. The traffic lights are empirical probability tables that generate a random delay based
on measured values of the red and green cycle times of each light. A yellow light is
considered part of the green cycle time since it is permissible to go through a yellow
light. As an example, if a light has a 25 second time of green and then a 25 second time
of red, the probability would be 0.5 for zero delay and 0.1 each for 5, 10, 15, 20 and 25
second delays. Although this ignores timing of multiple lights to coordinate traffic flow,
only three lights were sequenced in the direction of travel for this model. Rush hour
traffic is usually backed up on those segments negating any impact of the sequencing.
The car moves from top to bottom through all legs and lights in figure K-1 and the total
time is calculated. A Monte Carlo simulation is run 10,000 times to generate a
probability distribution of the total driving time. The output distribution is shown in

figure K-2.
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Figure K-2
Monte Carlo Distribution for Commute Simulation
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This results in an approximately Gaussian distribution with mean of 33.60 and standard
deviation of 1.30 minutes.

A manually constructed Bayesian network model was created using the same data
and assumptions as the equation-based model of figure K-1. The Bayesian network

model is presented in figure K-3.
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Manual Bayesian Network Commute Model
The model of figure K-3 is constructed with all traffic light delays on the left side and all
leg driving times on the right. The center nodes use an equation to sum the inputs of the

driving and traffic light delay times. The “Commuting Time” node in the center is the
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sum of all the nodes along either side. The Bayesian network also calculates a Gaussian

distribution shown in figure K-4.
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Figure K-4

Manual Bayesian Network Commute Time Distribution
This distribution has a mean of 32.9 and standard deviation of 4.2 minutes. The mean is
very similar to that obtained with the Monte Carlo simulation shown in figure K-2.
However, the standard deviation is wider and more accurately reflects the total possible
spread of values. This demonstrates an advantage of using Bayesian networks in
complex systems with multiple random variables. The probability of all traffic lights
being green is 0.0027 while the probability of arriving at all signals just as they turn red is
5.69E-13. While the Bayesian network was able to calculate the total probability range in
one computer cycle, a Monte Carlo simulation of the equation-based model would have
to run 1.76E12 samples in order to theoretically capture the rare event of arriving at all

the traffic lights as they turn red.
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A third model was constructed using measured travel times over the route
described above. Additional information including the day of the week the trip was made
and the start time of the trip were also recorded. BN PowerConstructor was used to

determine structural relationships which are shown in figure K-5.
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Figure K-5
Computer-Constructed Commute Model

A relationship was found between the day and time of departure and other nodes of the
network. BN Builder was then used to reconstruct the model using the software
described in section 6.1. This required the simultaneous discretization of 29 continuous

nodes. The distribution of node “Total” is shown in figure K-6.
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Figure K-6
Computer Bayesian Network Commute Time Distribution

This simulation had a non-Gaussian distribution with a mean travel time of 47.6 minutes.
The error percentage from the mean value of each prediction to the measured

mean of 46.46 minutes is presented in figure K-7.
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Figure K-7
Commute Simulation Error Comparison

This shows that many factors such as traffic, weather, accidents, etc. that are difficult to
quantify when constructing a model prior to collection of data do have a significant
impact on the outcome.

The equation model of figure K-1 was updated to include the measured data used
to create the computer generated model. The traffic light delays remain the same but the
leg times are replaced with a normal distribution of the measured data for each route leg.
A Monte Carlo simulation is then run with 10,000 samples with the results shown in

figure K-8.



316

Entries .
Histogram
1425 Y
1068.75)
712.5
356.25
0
25.14415 36.06486 46.98557 57.90628 68.82699
Time (mins)
Figure K-8

Updated Equation Monte Carlo Simulation
This results in a Gaussian distribution with a mean commute time of 44.83 and standard
deviation of 5.98 minutes. The Bayesian network model of figure K-3 was also updated
with the data collected from driving the route. This data was used to update all root
nodes (both leg times and light delays). The updated network has a Gaussian distribution

of driving times presented in figure K-9.
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Figure K-9

Updated Bayesian Network Commute Time Distribution
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This distribution is Gaussian with a mean driving time of 48.7 and a standard deviation of
9.2 minutes.

The updated models were tested using three additional commute times which
were not used in the probability updates. The percent difference of the prediction means

from the measured values are compared in figure K-10.
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Figure K-10
Commute Model Error Comparison

Even when updated with the measurement data, both of the Bayesian networks had lower
errors than the equation-based model. The times required to construct each of the three

models in presented in table K-1.



Table K-1
Commuter Model Construction Times
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Action Equation Model Manual Bayesian Machine Learning
(minutes) Network Bayesian Network
Lay Out Route and 40 40 -
Calculate Distances
Measure Light 95 95 -
Times and Calculate
Probabilities
Construct Model 74 107 6
Computer - - 3
Generation of Final
Model
Total Time 209 242 9

This particular example demonstrates two additional advantages of using

Bayesian networks. First, the manually created network is constructed such that all times

are independent of each other (each input node has a series of arcs that goes from that

node to the total time node without going through another input node). This network can

be used to refine the prediction of travel time as the route is traversed. As the actual

travel time for each leg or delay time for each light is entered, the mean travel time is

updated and the spread of possible values is reduced. This is demonstrated in figure K-11

where approximately two-thirds of the route is traversed with the times entered.
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Figure K-11

Commute Time Prediction at Halfway Point
Comparing figure K-11 with figure K-9, one can see that the new mean travel time
prediction is now 42.2 and that the distribution spread has been significantly reduced.
Although it is possible to do the same prediction with the equation-based model, the route
and light values would have to be changed from probability distributions to constants and
the Monte Carlo simulation run for another 10,000 iterations. This is certainly not
feasible for real time updates of the travel time predictions.

A second advantage is that Bayesian networks can find unmodeled relationships
which influence outcomes. The computer generated network in figure K-5 found that
both the day of the week and the time of departure influenced the network time variables.
These two variables are the only controllable variables that are inputs to the models. If
one is only interested in the probability distribution of total driving time, the network
structure of figure K-12 is obtained from BN PowerConstructor if data values “day” and

“time” are declared root nodes and “Total” is declared a leaf node.
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Using BN PowerConstructor ensures that there are in fact relations between “day” and

Figure K-12

Simplified Commute Network Structure

“Total” and “time” and “Total”. There are only 25 test measurements so that every cell

does not have test data for a probability calculation. The neural network option can be

used to predict times for day/time combinations that were not measured. The neural

network is shown in figure K-13.
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Figure K-13
Commute Neural Network

The three element data set, the structure of figure K-12 and neural network of figure K-13

are used as inputs to the BN Builder software with the output network shown in figure K-

14.



322

day depart

Friday 19,4 =132 1.83 B
oy 19,4 15.2t0 162 362 P
Wednesday 2000 16.2to 168 174 1
Thursday 206 16.8t0 168 0.62
Tues day 20,5 16.8t016.9 B1Tg o &

16.9t017.9 377 Lo

=174 0.62 o

a

Total

= 387 9.02
aeftod9 72
41.9 10 47 28,2
4710473 1.7
47.3t052.9 308
52910 70.2 131
== 70.2 2.493

Figure K-14
Day/Time Commute Model

This model can now make a probabilistic prediction of commute time based on inputs
“day” and “time”. For example, if it is Tuesday the model predicts that the average
commute time is 52 minutes and one should leave between 4:48 and 4:54 PM to
minimize driving time. If one wishes to be 90% confident of arriving home by 6 PM on
Wednesday, then departure can be no later than 5:05 PM. The same types of predictions
are not possible using an equation-based model without dramatically increasing the
complexity of the model. Although the light times would remain the same, each leg of
the journey and departure time period would need a separate random probability

distribution for each day of the week. This particular example shows strong advantages
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of using Bayesian networks when modeling complex, ill-defined systems where the

outputs will vary over a range of values.
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APPENDIX L



L. Integrated Radar/RCS and Air Defense Models

L.1 Integrated Radar Tracking Model

Appendix G provides an example of a radar cross section model of the B-26
aircraft shown in figure G-6. Appendix E provides an equation-based model of the F-16
radar shown in figures E-1 through E-3. The equation-based radar model was adjusted
with additional losses so that the model results validate with the test data. In this
example, it is assumed that the validated radar model now already exists. The aircraft
will be tracked by the radar requiring a motion model. Because object motion is a well
defined problem for which validated equations exist, an equation-based model is used for

motion. The motion model is shown in figure L-1.

Figure L-1
Integrated Radar/Target Motion Model
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The first blocks on the left open the Bayesian network and set heading, airspeed, altitude
and initial position of the target. The rest of the blocks set those conditions as attributes
in the simulation and calculates the movement of the aircraft between radar scans and the
aspect angle of the target.

The RCS of the target, as previously described, is a complex problem for which
good equation-based methods do not exist. A computer constructed Bayesian network is
chosen for this element of the model. The Bayesian network model integration is shown

in figure L-2.
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Figure L-2
Integrated Radar/Target Bayesian Network Integration
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The upper blocks set the aspect angle into the Bayesian network and retrieve the mean
and standard deviation of the radar cross section. The model then generates an RCS
value for this sweep by selecting a random number from a normal distribution defined by
the returned mean and standard deviation. This number is sent to the model of figure E-1
of appendix E in place of the RCS input block. The model then calculates the maximum
range of the radar for this RCS value. The center blocks compare the maximum range of
the radar with the current range of the target. If the actual range is less, the target is
detected. Target detection is then set in the far right blocks of the model. The lowest
blocks of the model correct the aspect angle to a value of 0 to 360 degrees if it is

negative. The parameters of the simulation are captured in the blocks shown in figure L-

Figure L-3
Integrated Radar/Target Simulation Recording
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The blocks of figure L-3 capture all the data parameters in an Excel spreadsheet. The last
two blocks at the far right delay the simulation for 2.5 seconds, the time between radar
sweeps. The aircraft is then routed back to the motion model for calculations of position
and aspect angle for the next sweep. This iterative looping continues until the end of the
simulation.

The simulation is now run over a period 16.67 minutes such that the aircraft
moves toward the radar. The radar does not move and is positioned at coordinates X=0,

Y=0. The F-16 radar track of the B-29 is shown in figure L-4.

O No Detection
© Detection

YRange (NM)

60 70 80 90 100 110 120 130
XRange (NM)

Figure L-4
Integrated Radar/B-26 Tracking Simulation
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The simulation provides a realistic simulation of radar operation. The target initially
returns a few detections, then transitions to about half detections and half non detections
and then finally moves in to a closer range where all returns are detections. This real
world phenomenon where a target fades in and out near the outer detection range is
known as target scintillation.

A second target model was created for a 1/15 scale model of the Boeing 737
commercial aircraft. The radar cross section measurement at 10 GHz is shown in figure

L-5.
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Figure L-5"
RCS Measurement of a 1/15 Scale B-737 Aircraft

The data of figure L-5 was used to create a Bayesian Network model of the aircraft RCS

using the software described in section 6.1. The RCS model is shown in figure L-6.

14 Knott, Eugene, Shaeffer, John and Tuley, Michael, Radar Cross Section, Artech House Inc., Norwood
MA, 1985, p. 181.
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A comparison of the model predictions with the test data is shown in figure L-7.
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Figure L-6
1/15 Scale B-737 Aircraft RCS Model
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1/15 Scale B-737 Aircraft RCS Model/Test Comparison

This model was then run in the integrated radar/RCS model over a different track to

determine the detection range. The results are shown in figure L-8.
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Figure L-8
Integrated Radar/1/15 Scale B-737 Tracking Simulation

As can be seen in figure L-8, the detection range of the much smaller model is much less
than the B-26 aircraft shown in figure L-4. The RCS value determined by the Bayesian

network model is shown as a function of the aspect angle is shown in figure L-9.
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Figure L-9
1/15 Scale B-737 RCS with Aspect Angle

As can be seen in figures L-7, L-8 and L-9, the primary reason the radar can see the target
as it passes the radar is not a function of target range, but the higher RCS value correctly
modeled by the Bayesian network as the aspect angle of the target changes with target
motion. As the aircraft passes so that the radar is looking at the left side of the aircraft,
the RCS increases dramatically just aft of the wing as shown in figures L-7 and L-9
resulting in target detection. As the aircraft passes on so that the aspect angle moves into
the left rear quarter, the RCS falls and the detection is lost even though the aircraft

continues to move closer to the radar.
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L.2 Integrated Air Defense Decision Model
A final integrated model was created to demonstrate how influence diagrams can
be tested and improved by allowing them to interact with a simulation. The combat

identification Bayesian network of figure L-10 was used as the starting point.
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Figure L-10
Combat Identification Network'>

This Bayesian network uses seven attributes of a target to identify the type of air vehicle
and determine whether it is hostile, neutral or friendly. These attributes include the speed
(Kinematics), Position relative to a commercial airway or specified return to force
procedures, radio communications with the target (Comms), whether the contact has an
Identify Friend or Foe (IFF) transponder turned on, Intelligence about the target,

electronic signals (EW) being emitted by radar onboard the target, and any change in the

' From [Laskey and Laskey, 2002]. Used with permission.
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frequency of the radar return caused by a Doppler shift of the radar energy bouncing off
the front of the engine (RSM). This network was expanded into an influence diagram by
adding a utility node and a decision node for recommending firing or not firing a weapon

at a target that is detected by the radar. The radar cross sections for three types of aircraft

were then added for use with the equation-based radar model as shown in figure L-11.

Figure L-11
Baseline Air Defense Influence Diagram
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The decision whether to shot at an incoming target is a function of the probability that a

target is hostile and the utilities assigned in figure L-12.
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Shoot Decision Utility Values
. As can be seen from figure, the most favorable outcomes are to shoot at a hostile target
while not shooting at neutral and friendly targets. The most unfavorable outcomes are to
not shoot at a hostile target while shooting at neutral and friendly targets.

The influence diagram of figure L-11 was then integrated into the equation-based
model of figure L-1 through L-3. The equation-based model first determined if the target
would be detected by the radar. If the target was detected, the values for nodes
“Kinematics”, “Position” and “RSM” were determined by the speed, position and aspect
angle of the target as calculated by the equation-based simulation. Nodes “EW”,
“Comms” and “IFF” were randomly determined by a random number generator set to
realistic values for each type of aircraft. Random errors were added to this data to test
how well the network would work under realistic conditions. For example, on the MIG-

29 EW node, there was a 50% chance the radar was on and identified as MIG-29, a 30%
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chance it was either not on or not picked up, and a 5% chance that it was misclassified as
each one of the other four options.

The model was then run for 1000 aircraft engagements to test how well the
network could correctly identify the type aircraft and make a correct decision whether to

recommend firing at the contact. The results of these tests are shown in figure L-13.
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Figure L-13
Baseline Air Defense Influence Diagram Results

The results of the simulation showed that the network had problems both correctly
identifying the type of target and in the underlying policy of determining whether a target
is hostile. Although the network successfully identified and recommended firing at all

incoming missiles, it also recommended firing at approximately 10% of the neutral
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targets and a third of friendly aircraft. This was caused by the conditional probabilities
identifying the type of target. The network also recommended firing at 75% of the MIG-
29 aircraft. This demonstrates a policy error in the logic of the original network.
Although one can define any inbound missile as a hostile threat, one would not fire at an
aircraft just because it is a specific type.

The decision structure of figure L-11 was first modified by adding arcs from node
“Identity” to nodes “EW” and “Kinematics”. A new policy that a MIG-29 flying at the
radar at speeds greater than 500 knots and with their radar on is considered to be hostile.
Otherwise, these aircraft are neutral. The influence diagram was cleared of all
probabilities and utility values. The equation-based model generated random aircraft
engagements, but was modified to randomly make the shoot decision and then determine
the utility of that decision. Once all node states for the influence diagram were set, the
probabilities and utility values were updated. This allowed the influence diagram to learn
by evaluating the outcome of each simulated engagement. In this way, the influence
diagram determined the unconditional and conditional probabilities for each natural node
and which decisions had the most favorable outcomes. The simulation was run 10,000
times to determine the probabilities, utilities and optimal decisions.

The updated network was then integrated with the original simulation and run for

another 1000 engagements. The results are provided in figure L-14,
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Figure L-14
Simulation-Trained Air Defense Influence Diagram Results

The network with revised decision policy and probabilities learned from simulation
provided much better results. The network correctly identified all incoming missiles and
recommended a decision to shoot. The network was now able to recognized 100% of all
types of neutral and friendly aircraft and recommended not shooting in all cases. The
MIG-29 was also correctly identified and a shoot decision was recommended in the 27%
of cases were the aircraft made a high speed run at the radar position with its radar on.
This example demonstrates the advantages of integrating equation-based models
with influence diagram in simulations. The equation-based portion of the model can be

used to determine the input states of the nodes of the influence diagram. In this example,



340

the model generated random starting points, headings and airspeeds for each target. The
equations of motion and the capabilities of the radar determined at what position and
aspect angle the target appeared on the radar. This information then determined whether
the target was detected. This approach provides more realistic input scenarios than using
random number inputs for the variables. The influence diagram can then make decisions
which are fed back to and effect the simulation. In this case, the returned decision was
whether to shoot at the radar contact. Although not implemented in this example, an
equation or Bayesian network model of a weapon could be implemented to continue the
simulation. Integrated simulation can also be used to test decision policy and to
determine the probability tables of natural nodes. For complex decisions, integrated
simulation can show whether the desired results are obtained for the given inputs. This is
particularly important in cases were inputs are either incorrect or not available. Provided
the simulation is representative of the real world, an influence diagram can be trained and

tested prior to implementation.
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APPENDIX M



M. Robotic Vehicle Models

The robotic vehicle models are a virtual representation of a robotic car
constructed from the Lego™ MindStorms® Robotics Invention System. The baseline

vehicle is shown in figure M-1.

Figure M-1
Baseline Robotic Vehicle

An equation-based model was created to predict the speed of the vehicle. The selection

and input sections of the model are presented in figure M-2.

342



343

=]
®— &y
count

Vehicle Weight Ni-Cd Alkaline
Sled Attached

2
Vehicle Drag

:°

# of Motors

Wheel
° Load fm Vehicle

Wheel diameter

Motor Gear

Gear Ratio

Wheel Gear
motors
Wheel
Ratio

Total w/sled
Load fm sled

Sled Weight

Pwr

Power Setting

Figure M-2
Robotic Vehicle Equation Model Inputs

The model elements on the left side are the input variables. The top two switches allow
the model to run using either alkaline or nickel-cadmium batteries and to attach or detach

a 1.5 pound sled for towing speed prediction. The calculations in figure M-2 find the

vehicle drag and the sled drag.
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The motor portion of the model is presented in figure M-3.
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Figure M-3
Robotic Vehicle Equation Motor Model

The top portion of figure M-3 calculates the maximum torque output of the motor based
on the type of battery selected. The lower portion of the model calculates parameters

used in the RPM calculations. The final portion of the model is shown in figure M-4.



345

Vdrag

Sdrag T

Check pvertorqu Intercept

Wheel
Ratio

Sled Zero

3.141592654

Figure M-4
Robotic Vehicle Equation Speed Model

The first portion of figure M-4 calculates the RPM of the motor. If the torque load is
greater than the maximum torque from the motors, the RPM is zero. The final portion
calculates the final vehicle speed based on the RPM, gear ratio and wheel size.

Equation model predictions were run for three different configurations. The kit
used to construct the car has some variation among the parts. The test area carpet also
did not have uniform friction over the surface. It was assessed that these values could
vary up to 10% in value. These elements were modeled as normally distributed random
variables with the mean set to the average value and standard deviation of 3.3% of the
mean. Battery voltage accounts for the largest variation in system performance. Battery

voltage was tested with the results presented in figure M-5.



346

& Ni-Cd
# Alkaline

Volts

0 50 100 150 200 250 300 350
Time (mins)

Figure M-5
Battery Test Data

The battery voltage was modeled as a random variable based on a normal distribution of
the test data.

System performance predictions were made using Monte Carlo simulation
varying the gear drag, sled drag and battery voltage over the range of values. The
prediction probability distribution was then compared to a normal distribution of test data
taken for four different configurations. These comparisons are presented in figures M-6

through M-9.
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Alkaline Battery, Power 8, No Sled Performance
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Alkaline Battery, Power 5, No Sled Performance
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In figure M-6, the test data may appear somewhat skewed from the prediction.
However, this is not the case since this test was conducted with a freshly charged set of
batteries. The data from such a sample set would be expected to fall within the upper tail
of the predictive distribution, which is exactly where it falls. The data in figures M-6
through M-8 provide a reasonable match to the predictions, validating that the equation
model is an accurate virtual representation of the robotic vehicle.

A different motor was obtained for the vehicle. The motor was tested to obtain
the RPM as a function of torque load, battery type and power setting. A Bayesian
network of the motor was constructed for the new motor. The test results were used to

create the probability tables. The motor network model is shown in figure M-10.

P ower Torque
D5to15 0O+ 0.005to 0012 286
15t025 O+ 0.0M2to 0019 286
25to3s O+ 0.019to0 0026 14.3
35t045 0O+ 0.026to0 0033 14.3
g.g :g gg 23-5 0.033to 004 143
St 0.9 +0.01

vatods V14
TA1x14

Battery \
Alkaline 500
MiCd 50.0 RPM

H 230to 500 12.0

200 ta 750 16.0
7a0to1000  13.5
1000to1250 10.4
1250101500 131
1500t0 1750 12.0
1750102000 17.1

1.162+003 £ 5.12+002

Figure M-10
Motor Bayesian Network Model
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The network used a non-uniform prior for probability learning to reduce any errors from

bins with no data.

The robotic vehicle was modified as shown in figure M-11.

Figure M-11
Modified Robotic Vehicle

The new motors were much larger in size than the original motors. As a result, the drive
train had to be changed from the gear driven system of figure M-1 to a pulley and belt

drive system in figure M-11. The drive and axle pulley sizes were adjusted in the model.
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The engine model of figure M-3 was then removed and replaced with the Bayesian

network interface blocks shown in figure M-12.

Open Network Enter Finding Set Node Value  Set Node Value Get Node Statistics

Figure M-12
Modified Robotic Vehicle Bayesian Network Model Integration

The elements of figure M-12 set the power and torque load calculated by the equation-
based portions of the models as attributes and then opens and compiles the network of
figure M-10. The battery type, power level and torque load variable states are passed to
the network and the mean and standard deviation of the motor RPM is returned. Because
the model uses a Monte Carlo method to create a probability distribution for the output
prediction, the mean and standard deviation are input to a random number generator
using a normal distribution of RPM.

The modified model was run to create a probability distribution prediction of the
robotic vehicle with the new motor and drive train. The modified robotic car was then
tested under the same conditions as figures M-6 through M-9. Multiple tests were
conducted to create a probability distribution. The model correctly predicted, and test
data confirmed, that the robotic vehicle could not tow the sled in the modified

configuration. The other three conditions are presented in figures M-13 through M-15.
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As can be seen in figures M-13 through M-15, the test data distribution fell within the
limits of the prediction in all 3 cases, as well as correctly predicting that there was

insufficient power to tow the sled.
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